Skip to main content
Log in

A comparison of algal periphyton composition on eleven species of submerged macrophytes

  • Published:
Hydrobiological Bulletin Aims and scope Submit manuscript

Summary

The composition of algal periphyton was examined on eleven species of submerged macrophytes collected at a depth of 0.25 m in Sewell Lake, southwestern Manitoba, a shallow nitrogen and phosphorus rich lake. There were substantial differences in the periphyton on all macrophyte species. Diatom subcommunities were the most similar, while the green algal subcommunities were the most dissimilar on different plant hosts.Potamogeton zosteriformis differed the most from all other macrophytes with respect to the composition of its periphyton. These results and a comparison of the literature suggest that the composition and structure of periphyton communities on living substrates is a product of the interaction of many variables, determined by the characteristics of the host plant, the external environment and the algae themselves. Studies of periphyton at a given site must take into account the various substrates available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALLANSON, B.R., 1973. The fine structure of the periphyton ofChara sp. andPotamogeton natans from Wytham Pond, Oxford and its significance to the macrophyte-periphyton metabolic model of R.G. Wetzel and H.L. Allen. Freshwat. Biol., 3: 535–542.

    Google Scholar 

  • ALLEN, H.L., 1971. Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr., 41: 97–127.

    Google Scholar 

  • ALLEN, H.L., and B.T. OCEVSKI, 1981. Comparative primary productivity of algal epiphytes on three species of macrophyte in the littoral zone of Lake Ohrid, Yugoslavia. Holarctic Ecol., 4: 155–160.

    Google Scholar 

  • A.P.H.A., 1971. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, New York.

    Google Scholar 

  • BARKO, J.W., D.G. HARDIN and M.S. MATTHEWS, 1982. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Can. J. Bot., 60: 877–887.

    Google Scholar 

  • BOWNIK, L.J., 1970. The periphyton of the submerged macrophytes of Mikolajskie Lake. Ekol. Polska, 18: 503–520.

    Google Scholar 

  • BROWN, H.D., 1976. A comparison of the attached algal communities of a natural and an artificial substrate. J. Phycol., 12: 301–306.

    Google Scholar 

  • BUTCHER, R.W., 1946. Studies in the ecology of river IV. The growth in certain highly calcareous streams. J. Ecol., 33: 268–283.

    Google Scholar 

  • CASTENHOLZ, R.W., 1960. Seasonal changes in the attached algae of freshwater and saline lakes in the Lower Grand Coulee Washington. Limnol. Oceanogr., 5: 1–28.

    Google Scholar 

  • CATTANEO, A., 1978. The microdistribution of epiphytes on the leaves of natural and artificial macrophytes. Br. phycol. J. 13: 183–188.

    Google Scholar 

  • CATANEO, A. and J. KALFF, 1978. Seasonal changes in the epiphyte community of natural and artificial macrophytes in Lake Memphremagog (Que. & Vt.). Hydrobiol., 60: 135–144.

    Article  Google Scholar 

  • COLT, L.C. jr. and C.B. HELLQUIST, 1974. The role of some Haloragaceae in algal ecology. Rhodora, 74: 446–456.

    Google Scholar 

  • DELBECQUE, E.J.P., 1983. A comparison of the periphyton ofNuphar lutea andNymphaea alba. In: Periphyton of Freshwater Ecosystems, R.G. Wetzel, ed. Dr. W. Junk Publ., The Hague, p. 41–47.

    Google Scholar 

  • EMINSON, D. and B. MOSS, 1980. The composition and ecology of periphyton communities in freshwaters. I. The influence of host type and external environment on community composition. Br. phycol. J., 15: 429–446.

    Google Scholar 

  • FOERSTER, J.W. and H.E. SCHLICHTING, jr., 1965. Phyco-periphyton in an oligotrophic lake. Amer. microsc. Soc. Trans., 84: 485–502.

    Google Scholar 

  • GODWARD, M. B., 1934. An investigation of the causal distribution of algal epiphytes. Beih. bot. Zbl. A, 52: 506–539.

    Google Scholar 

  • GODWARD, M.B., 1937. An ecological and taxonomic investigation of the littoral algal flora of Lake Windermere. J. Ecol., 25: 496–568.

    Google Scholar 

  • GONS, H.J., 1979. Periphyton in Lake Vechten, with emphasis on biomass and production of epiphytic algae. Hydrobiol. Bull., 13: 116. (Abstract).

    Google Scholar 

  • GOUGH, S.B. and W.J. WOELKERLING, 1976. Wisconsin desmids. II. Aufwuchs and plankton communities of selected soft water lakes, hard water lakes and calcareous spring ponds. Hydrobiol., 49: 3–25.

    Google Scholar 

  • HOWARD-WILLIAMS, C. and B.R. DAVIES, 1978. The influence of periphyton on the surface structure of aPotamogeton pectinatus L. leaf (an hypothesis). Aquatic Bot., 5: 87–91.

    Article  Google Scholar 

  • HUSTEDT, F., 1930. Bacillariophyta (Diatomeae). Süsswasser-Flora Mitteleuropas. 10: VIII. G. Fischer, Jena.

    Google Scholar 

  • HUTCHINSON, G.E., 1975. A Treatise on Limnology. Vol. III. Limnological Botany. Wiley & Sons, New York.

    Google Scholar 

  • KESLER, D.H., 1981. Periphyton grazing byAmnicola limosa: an enclosure-exclosure experiment. J. Freshwat. Ecol., 1: 51–59.

    Google Scholar 

  • LAKATOS, G., 1978. Comparative analysis of biotecton (periphyton) samples collected from natural substrate in waters of different trophic state. Acta Bot. Acad. Scien. Hung., 24: 285–299.

    Google Scholar 

  • MORGAN, K.C. and J. KALFF, 1979. Effect of light and temperature interactions on growth ofCryptomonas erosa (Cryptophyceae). J. Phycol., 15: 127–134.

    Article  Google Scholar 

  • MOSS, B., 1976. The effects of fertilization and fish on community structure and biomass of aquatic macrophytes and epiphytic algal populations: an ecosystem experiment. J. Ecol., 64: 313–342.

    Google Scholar 

  • McROY, C.P. and J.J. GOERING, 1974. Nutrient transfer between the seagrassZostera marina and its epiphytes. Nature, 248: 173–174.

    Article  Google Scholar 

  • MILLIE, D.F. and R.L. LOWE, 1983. Studies on Lake Erie's littoral algae: Host specificity and temporal periodicity of epiphytic diatoms. Hydrobiol., 99:7–18.

    Article  Google Scholar 

  • ODUM, H.T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr., 27:55–112.

    Google Scholar 

  • ORLOCI, L., 1966. Geometric models in ecology. I. The theory and application of some ordination methods. J. Ecol., 54: 193–216.

    Google Scholar 

  • PATRICK, R. and C.W. REIMER, 1966. The Diatoms of the United States. Acad. Nat. Sci. Phil., Monogr. No. 13, 1: 1–688.

    Google Scholar 

  • PATRICK, R. and C.W. REIMER, 1975. The Diatoms of the United States. Acad. Nat. Sci. Phil., Monogr. No. 13, 2: Part 1, 1–213.

    Google Scholar 

  • PHILLIPS, G.L., D. EMINSON and B. MOSS, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Bot., 4: 103–126.

    Article  Google Scholar 

  • PIECZYNSKA, E., 1970. Periphyton in the trophic structure of freshwater ecosystems. Pol. Arch. Hydrobiol., 17: 141–147.

    Google Scholar 

  • PIP, E. and G.G.C. ROBINSON, 1982a. A study of the seasonal dynamics of three phycoperiphytic communities using nuclear track autoradiography. I. Inorganic carbon uptake. Arch. Hydrobiol., 94: 341–371.

    Google Scholar 

  • PIP, E., and G.G.C. ROBINSON, 1982b. A study of the seasonal dynamics of three phycoperiphytic communities using nuclear track autoradiography. II. Organic carbon uptake. Arch. Hydrobiol., 96: 47–64.

    Google Scholar 

  • PRESCOTT, G.W., 1962. Algae of the western Great Lakes Area. Wm. C. Brown Co., Dubuque, Iowa.

    Google Scholar 

  • PROWSE, G.A., 1959. Relationship between epiphytic algal species and their macrophytic hosts. Nature, 183: 1204–1205.

    Google Scholar 

  • RHO, J. and H.B. GUNNER, 1978. Microfloral response to aquatic weed decomposition. Wat. Res., 12: 165–170.

    Article  Google Scholar 

  • SZCZEPANSKI, A., 1968. Production of reed periphyton in various types of lakes. Bull. Acad. Pol. Sci., 16: 359–362.

    Google Scholar 

  • SIVER, P.A., 1977. Comparison of attached diatom communities on natural and artificial substrates. J. Phycol., 13: 402–406.

    Google Scholar 

  • STEEMAN-NIELSEN, E., 1947. Photosynthesis of aquatic plants with special reference to carbon-sources. Dansk Bot. Arkiv., 12: 1–71.

    Google Scholar 

  • SUMNER, W.T. and C.D. McIntire, 1982. Grazer-periphyton interactions in laboratory streams. Arch. Hydrobiol., 93: 135–157.

    Google Scholar 

  • TIPPETT, R., 1970. Artificial surfaces as a method of studying populations of benthic micro-algae in fresh water. Br. Phycol. J., 5: 187–199.

    Google Scholar 

  • TITUS, J.E. and W.H. STONE, 1982. Photosynthetic response of two submersed macrophytes to dissolved inorganic carbon concentration and pH. Limnol. Oceanogr., 27: 151–160.

    Google Scholar 

  • WETZEL, R.G., 1969. Factors influencing photosynthesis and excretion of dissolved organic matter by aquatic macrophytes in hard-water lakes. Verh. Int. Ver. Limnol., 17: 72–85.

    Google Scholar 

  • WETZEL, R.G. and B.A. MANNY, 1972. Secretion of dissolved organic carbon and nitrogen by aquatic macrophytes. Verh. Int. Ver. Limnol., 18: 162–170.

    Google Scholar 

  • WHITFORD, L.A., 1956. The communities of algae in the springs and spring streams of Florida. Ecology, 37: 433–442.

    Google Scholar 

  • WILLER, A., 1923. Der Aufwuchs der Unterwasserpflanzen. Verh. Int. Ver. Limnol., 1: 37–57.

    Google Scholar 

  • WIUM-ANDERSEN, S., U. ANTHONI, C. CHRISTOPHERSEN and G. HOUEN, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos, 39: 187–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pip, E., Robinson, G.G.C. A comparison of algal periphyton composition on eleven species of submerged macrophytes. Hydrobiological Bulletin 18, 109–118 (1984). https://doi.org/10.1007/BF02257050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257050

Keywords

Navigation