Skip to main content
Log in

Linking nutrient enrichment and streamflow to macrophytes in agricultural streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Efforts to limit plant growth in streams by reducing nutrients would benefit from an understanding of the relative influences of nutrients, streamflow, light, and other potentially important factors. We measured macrophytes, benthic algae, nutrients in water and sediment, discharge, and shading from 30 spring-fed or runoff-influenced streams in the upper Snake River basin, ID, USA. We hypothesized that in hydrologically stable, spring-fed streams with clear water, macrophyte and benthic algae biomass would be a function of bioavailable nutrients in water or sediments, whereas in hydrologically dynamic, runoff-influenced streams, macrophyte and benthic algae biomass would further be constrained by flow disturbance and light. These hypotheses were only partly supported. Nitrogen, both in sediment and water, was positively correlated with macrophyte biomass, as was loosely sorbed phosphorus (P) in sediment. However, P in water was not. Factors other than nutrient enrichment had the strongest influences on macrophyte species composition. Benthic algal biomass was positively correlated with loosely sorbed sediment P, lack of shade, antecedent water temperatures, and bicarbonate. These findings support the measurement of bioavailable P fractions in sediment and flow histories in streams, but caution against relying on macrophyte species composition or P in water in nutrient management strategies for macrophytes in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barko, J. W. & R. M. Smart, 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328–1340.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F., 1996. Hydraulic habitat of plants in streams. Regulated Rivers: Research & Management 12: 131–144.

    Article  Google Scholar 

  • Biggs, B. J. F., 2000. Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19: 17–31.

    Article  Google Scholar 

  • Biggs, B. J. F., V. I. Nikora & T. H. Snelder, 2005. Linking scales of flow variability to lotic ecosystem structure and function. River Research and Applications 21: 283–298.

    Article  Google Scholar 

  • Birgand, F., R. W. Skaggs, G. M. Chescheir & J. W. Gilliam, 2007. Nitrogen removal in streams of agricultural catchments – a literature review. Critical Reviews in Environmental Science and Technology 37: 381–487.

    Article  CAS  Google Scholar 

  • Boström, B., J. M. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170: 229–244.

    Article  Google Scholar 

  • Brookshire, E. N. J., H. M. Valett, S. A. Thomas & J. R. Webster, 2005. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream. Ecology 86: 2487–2496.

    Article  Google Scholar 

  • Butcher, R. W., 1933. Studies on the ecology of rivers. I. On the distribution of macrophytic vegetation in the rivers of Britain. Journal of Ecology 21: 58–91.

    Article  CAS  Google Scholar 

  • Canfield, D. E. Jr & M. V. Hoyer, 1988. Influence of nutrient enrichment and light availability on the abundance of aquatic macrophytes in Florida streams. Canadian Journal of Fisheries and Aquatic Sciences 45: 1467–1472.

    Article  Google Scholar 

  • Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987–989.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Carr, G. M. & P. A. Chambers, 1998. Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biology 39: 525–536.

    Article  CAS  Google Scholar 

  • Carr, G. M., H. C. Duthie & W. D. Taylor, 1997. Models of aquatic plant productivity: a review of the factors that influence growth. Aquatic Botany 59: 195–215.

    Article  Google Scholar 

  • Carr, G. M., S. A. E. Bod, H. C. Duthie & W. D. Taylor, 2003. Macrophyte biomass and water quality in Ontario rivers. Journal of the North American Benthological Society 22: 182–193.

    Article  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1979. Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnology and Oceanography 24: 1031–1037.

    Article  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnology and Oceanography 25: 280–289.

    Article  Google Scholar 

  • Chambers, P. A., E. E. Prepas, M. L. Bothwell & H. R. Hamilton, 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Canadian Journal of Fisheries and Aquatic Sciences 46: 435–439.

    Article  Google Scholar 

  • Chambers, P. A., E. E. Prepas, H. R. Hamilton & M. L. Bothwell, 1991. Current velocity and its effect on aquatic macrophytes in flowing waters. Ecological Applications 1: 249–257.

    Article  Google Scholar 

  • Chambers, P. A., R. E. DeWreede, E. A. Irlandi & H. Vandermeulen, 1999. Management issues in aquatic macrophyte ecology: a Canadian perspective. Botany 77: 471–487.

    Article  Google Scholar 

  • Chambers, P. A., D. J. McGoldrick, R. B. Brua, C. Vis, J. M. Culp & G. A. Benoy, 2012. Development of environmental thresholds for nitrogen and phosphorus in streams. Journal of Environmental Quality 41: 7–20.

    Article  PubMed  CAS  Google Scholar 

  • Clark, G. M. & D. S. Ott, 1996. Springflow effects on chemical loads in the Snake River, south-central Idaho. Water Resources Bulletin 32: 553–563.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, S. J., 2002. Vegetation growth in rivers: influences upon sediment and nutrient dynamics. Progress in Physical Geography 26: 159–172.

    Article  Google Scholar 

  • Clarke, K. R., P. J. Somerfield & R. N. Gorley, 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366: 56–69.

    Article  Google Scholar 

  • Demars, B. O. L. & A. C. Edwards, 2009. Distribution of aquatic macrophytes in contrasting river systems: a critique of compositional-based assessment of water quality. Science of the Total Environment 407: 975–990.

    Article  PubMed  CAS  Google Scholar 

  • Demars, B. O. L. & G. Thiébaut, 2008. Distribution of aquatic plants in the Northern Vosges rivers: implications for biomonitoring and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 619–632.

    Article  Google Scholar 

  • Demars, B. O. L., J. M. Potts, M. Trémolières, G. Thiébaut, N. Gougelin & V. Nordmann, 2012. River macrophyte indices: not the Holy Grail! Freshwater Biology 57: 1745–1759.

    Article  Google Scholar 

  • Dillon, P. J. & W. B. Kirchner, 1975. The effects of geology and land use on the export of phosphorus from watersheds. Water Research 9: 135–148.

    Article  CAS  Google Scholar 

  • Dodds, W. K., 2007. Trophic state, eutrophication and nutrient criteria in streams. Trends in Ecology and Evolution 22: 669–676.

    Article  PubMed  Google Scholar 

  • Feijoó, C. S. & R. J. Lombardo, 2007. Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research 41: 1399–1410.

    Article  PubMed  Google Scholar 

  • Feijoó, C., A. Giorgi & N. Ferreiro, 2011. Phosphate uptake in a macrophyte-rich Pampean stream. Limnologica 41: 285–289.

    Article  Google Scholar 

  • Fitzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. Journal of Phycology 5: 351–359.

    Article  Google Scholar 

  • Franklin, P., M. Dunbar & P. Whitehead, 2008. Flow controls on lowland river macrophytes: a review. Science of the Total Environment 400: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • French, T. D. & P. A. Chambers, 1997. Reducing flows in the Nechako River (British Columbia, Canada): potential response of the macrophyte community. Canadian Journal of Fisheries and Aquatic Sciences 54: 2247–2254.

    Google Scholar 

  • Gaines, S. D. & M. W. Denny, 1993. The largest, smallest, highest, lowest, longest and shortest: extremes in ecology. Ecology 74: 1677–1692.

    Article  Google Scholar 

  • Gensemer, R. W. & R. C. Playle, 1999. The bioavailability and toxicity of aluminum in aquatic environments. Critical Reviews in Environmental Science and Technology 29: 315–450.

    Article  CAS  Google Scholar 

  • Geurts, J. J. M., A. J. P. Smolders, J. T. A. Verhoeven, J. G. M. Roelofs & L. P. M. Lamers, 2008. Sediment Fe:PO4 ratio as a diagnostic and prognostic tool for the restoration of macrophyte biodiversity in fen waters. Freshwater Biology 43: 2101–2116.

    Article  Google Scholar 

  • Grasmück, N., J. Haury, L. Léglize & S. Muller, 1995. Assessment of the bio-indicator capacity of aquatic macrophytes using multivariate analysis. Hydrobiologia 300–301: 115–122.

    Article  Google Scholar 

  • Gregg, W. W. & F. L. Rose, 1982. The effects of aquatic macrophytes on the stream microenvironment. Aquatic Botany 14: 309–324.

    Article  Google Scholar 

  • Gurnell, A., 2013. Plants as river system engineers. Earth Surface Processes and Landforms. doi:10.1002/esp.3397.

    Google Scholar 

  • Helsel, D. R. & R. M. Hirsch, 2002. Statistical Methods in Water Resources Techniques of Water-Resources Investigations of the United States Geological Survey, Book 4, Hydrologic Analysis and Interpretation, Chap. A3. U.S. Geological Survey, Menlo Park: 524.

    Google Scholar 

  • Hilton, J., M. T. O’Hare, M. J. Bowes & J. I. Jones, 2006. How green is my river? A new paradigm of eutrophication in rivers. Science of the Total Environment 365: 66–83.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, H. S., P. Kristensen, E. Jeppesen & A. Skytthe, 1992. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 235–236: 731–743.

    Article  Google Scholar 

  • Jones, J. I., J. O. Young, J. W. Eaton & B. Moss, 2002. The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. Journal of Ecology 90: 12–24.

    Article  Google Scholar 

  • Jones, J. I., A. L. Collins, P. S. Naden & D. A. Sear, 2012. The relationship between fine sediment and macrophytes in rivers. River Research and Applications 28: 1006–1018.

    Article  Google Scholar 

  • Kaplan, Z., 2008. A taxonomic revision of Stuckenia (Potamogetonaceae) in Asia, with notes on the diversity and variation of the genus on a worldwide scale. Folia Geobotanica 43: 159–234.

    Article  Google Scholar 

  • Lyons, J. B., J. H. Görres & J. A. Amador, 1998. Spatial and temporal variability of phosphorus retention in a riparian forest soil. Journal of Environmental Quality 27: 895–903.

    Article  CAS  Google Scholar 

  • Madsen, T. V. & K. Sand-Jensen, 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany 41: 5–40.

    Article  CAS  Google Scholar 

  • Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch & D. F. Westlake, 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444: 71–84.

    Article  Google Scholar 

  • Marcarelli, A. M., A. T. Rugenski, H. A. Bechtold & R. S. Inouye, 2009. Nutrient limitation of biofilm biomass and metabolism in the Upper Snake River basin, southeast Idaho, USA. Hydrobiologia 620: 63–76.

    Article  CAS  Google Scholar 

  • Maret, T. R., C. P. Konrad & A. W. Tranmer, 2010. Influence of environmental factors on biotic responses to nutrient enrichment in agricultural streams. Journal of the American Water Resources Association 46: 498–513.

    PubMed  CAS  Google Scholar 

  • Munn, M. D., J. W. Frey & A. J. Tesoriero, 2010. The influence of nutrients and physical habitat in regulating algal biomass in agricultural streams. Environmental Management 45: 603–615.

    Article  PubMed  Google Scholar 

  • O’Hare, M. T., R. T. Clarke, M. J. Bowes, C. Cailes, P. Henville, N. Bissett, C. McGahey & M. Neal, 2010. Eutrophication impacts on a river macrophyte. Aquatic Botany 92: 173–178.

    Article  Google Scholar 

  • Pelton, D. K., S. N. Levine & M. Braner, 1998. Measurements of phosphorus uptake by macrophytes and epiphytes from the LaPlatte river (VT) using 32P in stream microcosms. Freshwater Biology 39: 285–299.

    Article  Google Scholar 

  • Prairie, Y. T., 1996. Evaluating the predictive power of regression models. Canadian Journal of Fisheries and Aquatic Sciences 53: 490–492.

    Article  Google Scholar 

  • Rasmussen, J. J., A. Baattrup-Pedersen, T. Riis & N. Friberg, 2011. Stream ecosystem properties and processes along a temperature gradient. Aquatic Ecology 45: 231–242.

    Article  Google Scholar 

  • Raun, A. L., J. Borum & K. Sand-Jensen, 2010. Influence of sediment organic enrichment and water alkalinity on growth of aquatic isoetid and elodeid plants. Freshwater Biology 55: 1891–1904.

    Article  Google Scholar 

  • Riis, T. & B. J. F. Biggs, 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography 48: 1488–1497.

    Article  Google Scholar 

  • Riis, T., K. Sand-Jensen & O. Vestergaard, 2000. Plant communities in lowland streams: species composition and environmental factors. Aquatic Botany 66: 255–272.

    Article  Google Scholar 

  • Riis, T., A. M. Suren, B. Clausen & K. Sand-Jensen, 2008. Vegetation and flow regime in lowland streams. Freshwater Biology 53: 1531–1543.

    Article  Google Scholar 

  • Robinson, K. L., C. Valeo, M. C. Ryan, A. Chu & M. Iwanyshyn, 2009. Modelling aquatic vegetation and dissolved oxygen after a flood event in the Bow River, Alberta, Canada. Canadian Journal of Civil Engineering 36: 492–503.

    Article  CAS  Google Scholar 

  • Ruttenberg, K. C., 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography 37: 1460–1482.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Simon, N. S., D. Lynch & T. N. Gallaher, 2009. Phosphorus fractionation in sediment cores collected in 2005 before and after onset of an Aphanizomenon flos-aquae bloom in Upper Klamath Lake, OR, USA. Water, Air, and Soil Pollution 204: 139–153.

    Article  CAS  Google Scholar 

  • Sosiak, A., 2002. Long-term response of periphyton and macrophytes to reduced municipal nutrient loading to the Bow River (Alberta, Canada). Canadian Journal of Fisheries and Aquatic Sciences 59: 987–1001.

    Article  Google Scholar 

  • Squires, M. M. & L. F. W. Lesack, 2003. The relation between sediment nutrient content and macrophyte biomass and community structure along a water transparency gradient among lakes of the Mackenzie Delta. Canadian Journal of Fisheries and Aquatic Sciences 60: 333–343.

    Article  CAS  Google Scholar 

  • Steffen, K., T. Becker, W. Herr & C. Leuschner, 2013. Diversity loss in the macrophyte vegetation of northwest German streams and rivers between the 1950s and 2010. Hydrobiologia 713: 1–17.

    Article  Google Scholar 

  • Tesoriero, A. J., J. H. Duff, D. A. Saad, N. E. Spahr & D. M. Wolock, 2013. Vulnerability of streams to legacy nitrate sources. Environmental Science & Technology 47: 3623–3629.

    Article  CAS  Google Scholar 

  • Thiébaut, G., 2008. Phosphorus and aquatic plants. Plant Ecophysiology 7: 31–49.

    Article  Google Scholar 

  • Thiébaut, G. & S. Muller, 2003. Linking phosphorus pools of water, sediment and macrophytes in running waters. Annales de Limnologie 39: 307–316.

    Article  Google Scholar 

  • USEPA, 2000. Nutrient Criteria Technical Guidance Manual: Rivers and Streams. U.S. Environmental Protection Agency, Washington, DC. 253.

    Google Scholar 

  • von Fumetti, S., P. Nagel & B. Baltes, 2007. Where a springhead becomes a springbrook – a regional zonation of springs. Fundamental and Applied Limnology 169: 37–48.

    Article  Google Scholar 

  • Waite, I. R., 2013. Development and application of an agricultural intensity index to invertebrate and algal metrics from streams at two scales. Journal of the American Water Resources Association 49: 431–448.

    Article  Google Scholar 

  • Warton, D. I., 2008. Raw data graphing: an informative but under-utilized tool for the analysis of multivariate abundances. Austral Ecology 33: 290–300.

    Article  Google Scholar 

  • Wersal, R. M. & J. D. Madsen, 2011. Influences of water column nutrient loading on growth characteristics of the invasive aquatic macrophyte Myriophyllum aquaticum (Vell.) Verdc. Hydrobiologia 665: 93–105.

    Article  CAS  Google Scholar 

  • Winter, J. G. & H. C. Duthie, 2000. Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. Aquatic Ecology 34: 345–353.

    Article  Google Scholar 

  • Wright, J. C. & I. K. Mills, 1967. Productivity studies on the Madison River, Yellowstone National Park. Limnology and Oceanography 12: 568–577.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for the study was from the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Mebane.

Additional information

Handling editor: Sidinei Magela Thomaz

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1. Methods details and supplemental results (ESM1.pdf) (PDF 1346 kb)

10750_2013_1693_MOESM2_ESM.kml

Online Resource 2. Interactive map of study sites and their landscape settings, in the Keyhole Markup Language (kml) format, viewable with 3D virtual globe programs such as the U.S. National Aeronautic and Space Administration’s (NASA) World Wind, Google Earth, or ESRI ArcGIS Explorer. (ESM2.kml). (KML 20 kb)

Online Resource 3. Data summaries (ESM3.xls) (XLS 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mebane, C.A., Simon, N.S. & Maret, T.R. Linking nutrient enrichment and streamflow to macrophytes in agricultural streams. Hydrobiologia 722, 143–158 (2014). https://doi.org/10.1007/s10750-013-1693-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1693-4

Keywords

Navigation