Skip to main content
Log in

Nutrient limitation of biofilm biomass and metabolism in the Upper Snake River basin, southeast Idaho, USA

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

It is essential to know the nutrient limitation status of biofilms to understand how they may buffer uptake and export of nutrients from polluted watersheds. We tested the effects of nutrient additions on biofilm biomass (chlorophyll a, ash free dry mass (AFDM), and autotrophic index (AI, AFDM/chl a)) and metabolism via nutrient-diffusing substrate bioassays (control, nitrogen (N), phosphorus (P), and N + P treatments) at 11 sites in the Upper Snake River basin (southeast Idaho, USA) that differed in the magnitude and extent of human-caused impacts. Water temperature, turbidity, and dissolved inorganic N concentrations all changed seasonally at the study sites, while turbidity and dissolved inorganic N and P also varied with impact level. Chl a and AI on control treatments suggested that the most heavily impacted sites supported more autotrophic biofilms than less-impacted sites, and that across all sites biofilms were more heterotrophic in autumn than in summer. Nutrient stimulation or suppression of biofilm biomass was observed for chl a in 59% of the experiments and for AFDM in 33%, and the most frequent response noted across all study sites was N limitation. P suppression of chl a was observed only at the most-impacted sites, while AFDM was never suppressed by nutrients. When nutrient additions did have significant effects on metabolism, they were driven by differences in biomass rather than by changes in metabolic rates. Our study demonstrated that biofilms in southeast Idaho rivers were primarily limited by N, but nutrient limitation was more frequent at sites with good water quality than at those with poor water quality. Additionally, heterotrophic and autotrophic biofilm components may respond differently to nutrient enrichment, and nutrient limitation of biofilm biomass should not be considered a surrogate for metabolism in these rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Public Health Association, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington DC.

    Google Scholar 

  • Bernhardt, E. S. & G. E. Likens, 2002. Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 83: 1689–1700.

    Google Scholar 

  • Bernhardt, E. S. & G. E. Likens, 2004. Controls on periphyton biomass in heterotrophic streams. Freshwater Biology 49: 14–27.

    Article  Google Scholar 

  • Bernot, M. J. & W. K. Dodds, 2005. Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 8: 442–453.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F., 2000. Eutrophication of streams and rivers: dissolved nutrient–chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19: 17–31.

    Article  Google Scholar 

  • Bott, T. L., J. T. Brock, C. S. Dunn, R. J. Naiman, R. W. Ovink & R. C. Petersen, 1985. Benthic community metabolism in four temperate stream systems: an inter-biome comparison and evaluation of the river continuum concept. Hydrobiologia 123: 3–45.

    Article  Google Scholar 

  • Bott, T. L., J. T. Brock, A. Baattrup-Pederson, P. A. Chambers, W. K. Dodds, K. T. Himbeault, J. R. Lawrence, D. Planas, E. Snyder & G. M. Wolfaardt, 1997. An evaluation of techniques for measuring periphyton metabolism in chambers. Canadian Journal of Fisheries and Aquatic Sciences 54: 715–725.

    Article  Google Scholar 

  • Brussard, C. P. D. & R. Riegman, 1998. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aquatic Microbial Ecology 14: 271–280.

    Article  Google Scholar 

  • Campbell, T., S. Wood, R. James, R. Rodriguez & G. M. Arcand, 1992. An evaluation of the concentration of orthophosphate in the Portneuf River, Idaho. Journal of the Idaho Academy of Science 28: 40–47.

    Google Scholar 

  • Danger, M., C. Oumarou, D. Benest & G. Lacroix, 2007. Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Functional Ecology 21: 202–210.

    Article  Google Scholar 

  • Davies-Colley, R. J. & D. G. Smith, 2001. Turbidity, suspended sediment, and water clarity: a review. Journal of the American Water Resources Association 37: 1085–1101.

    Article  Google Scholar 

  • Davis, J. C., G. W. Minshall, C. T. Robinson & P. Landres, 2001. Monitoring wilderness stream ecosystems. General Technical Report RMRS-GTR-70. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT.

  • Dodds, W. K. & E. B. Welch, 2000. Establishing nutrient criteria in streams. Journal of the North American Benthological Society 19: 186–196.

    Article  Google Scholar 

  • Earl, S. E., H. M. Valett & J. R. Webster, 2006. Nitrogen saturation in stream ecosystems. Ecology 87: 3140–3151.

    Article  PubMed  Google Scholar 

  • Edmondson, W. T. & J. T. Lehman, 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnology and Oceanography 26: 1–29.

    Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences 47: 1468–1477.

    Article  CAS  Google Scholar 

  • Elser, J. J., M. E. S. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  PubMed  Google Scholar 

  • Fairchild, G. W., R. L. Lowe & W. B. Richardson, 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66: 465–472.

    Article  CAS  Google Scholar 

  • Fellows, C. S., H. M. Valett, C. N. Dahm, P. J. Mulholland & S. A. Thomas, 2006a. Coupling nutrient uptake and energy flow in headwater streams. Ecosystems 9: 788–804.

    Article  CAS  Google Scholar 

  • Fellows, C. S., J. E. Clapcott, J. W. Udy, S. E. Bunn, B. D. Harch, M. J. Smith & P. M. Davies, 2006b. Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia 572: 71–87.

    Article  Google Scholar 

  • Francoeur, S. N., 2001. Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society 20: 358–368.

    Article  Google Scholar 

  • Francoeur, S. N. & B. J. F. Biggs, 2006. Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Hydrobiologia 561: 59–69.

    Article  Google Scholar 

  • Gibeau, G. G. & M. C. Miller, 1989. A micro-bioassay for epilithon using nutrient-diffusing artificial substrata. Journal of Freshwater Ecology 5: 171–176.

    Google Scholar 

  • Guasch, H., E. Martí & S. Sabater, 1995. Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwater Ecology 33: 373–383.

    Article  Google Scholar 

  • Hagen, E. M., J. R. Webster & E. F. Benfield, 2006. Are leaf breakdown rates a useful measure of stream integrity along an agricultural landuse gradient? Journal of the North American Benthological Society 25: 330–343.

    Article  Google Scholar 

  • Hall, R. O., S. Thomas & E. E. Gaiser, 2007. Measuring freshwater primary production and respiration. In Fahey, T. J. & A. K. Knapp (eds), Principles and Standards for Measuring Primary Production. Oxford University Press, New York: 175–203.

    Chapter  Google Scholar 

  • Hill, W. R., M. G. Ryon & E. M. Schilling, 1995. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76: 1297–1309.

    Article  Google Scholar 

  • Idaho Department of Environmental Quality, Shoshone-Bannock Tribes, Environmental Protection Agency, 2006. American Falls Subbasin Total Maximum Daily Load Plan: Subbasin Assessment and Loading Analysis. Idaho Department of Environmental Quality, Pocatello, ID.

    Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983. Geothermal effects on stream benthos: separate influences of thermal and chemical components on periphyton and macroinvertebrates. Canadian Journal of Fisheries and Aquatic Sciences 40: 1995–2009.

    Article  Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Lock, M. A., T. E. Ford, M. A. J. Hullar, M. Kaufman, J. R. Vestal, G. S. Volk & R. M. Ventullo, 1990. Phosphorus limitation in an Arctic river biofilm – a whole ecosystem experiment. Water Research 24: 1545–1549.

    Article  CAS  Google Scholar 

  • Marcarelli, A. M. & W. A. Wurtsbaugh, 2006. Temperature and nutrients interact to control nitrogen fixation in oligotrophic streams: an experimental examination. Limnology and Oceanography 51: 2278–2289.

    Article  CAS  Google Scholar 

  • Meyer, J. L., B. J. Wallace & S. L. Eggert, 1998. Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1: 240–249.

    Article  CAS  Google Scholar 

  • Meyer, J. L., M. J. Paul & W. K. Taulbee, 2005. Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society 24: 602–612.

    Google Scholar 

  • Morin, A., W. Lamoureux & J. Busnarda, 1999. Empirical models predicting primary productivity from chlorophyll a and water temperature for stream periphyton and lake and ocean phytoplankton. Journal of the North American Benthological Society 18: 299–307.

    Article  Google Scholar 

  • Mosisch, T. D., S. E. Bunn, P. M. Davies & C. J. Marshall, 1999. Effects of shade and nutrient manipulation on periphyton growth in a subtropical stream. Aquatic Botany 64: 167–177.

    Article  Google Scholar 

  • Mulholland, P. J., C. S. Fellows, J. L. Tank, N. B. Grimm, J. R. Webster, S. K. Hamilton, E. Martí, L. Ashkenas, W. B. Bowden, W. K. Dodds, W. H. McDowell, M. J. Paul & B. J. Peterson, 2001. Inter-biome comparison of factors controlling stream metabolism. Freshwater Biology 46: 1503–1517.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., S. A. Thomas, H. M. Valett, J. R. Webster & J. Beaulieu, 2006. Effects of light on NO3 uptake in small forested streams: diurnal and day-to-day variations. Journal of the North American Benthological Society 25: 583–595.

    Article  Google Scholar 

  • Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32: 333–365.

    Article  Google Scholar 

  • Rosemond, A. D., P. J. Mulholland & J. W. Elwood, 1993. Top-down and bottom-up control of stream periphyton: effects of nutrients and herbivores. Ecology 74: 1264–1280.

    Article  Google Scholar 

  • Royer, T. V., M. B. David & L. E. Gentry, 2006. Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: implications for reducing nutrient loading to the Mississippi River. Environmental Science and Technology 40: 4126–4131.

    Article  PubMed  CAS  Google Scholar 

  • Rugenski, A. T., A. M. Marcarelli, H. A. Bechtold & R. S. Inouye, 2008. Effects of temperature and concentration on nutrient release rates from nutrient diffusing substrates. Journal of the North American Benthological Society 27: 52–57.

    Article  Google Scholar 

  • Schindler, D. W., 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897–899.

    Article  PubMed  CAS  Google Scholar 

  • Steinman, A. D., G. A. Lamberti & P. R. Leavitt, 2006. Biomass and pigments of benthic algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego: 357–379.

    Google Scholar 

  • Stoddard, J. L., 1994. Long-term changes in watershed retention of nitrogen. In Baker, L. A. (ed.), Environmental Chemistry of Lakes and Reservoirs. American Chemical Society, Washington DC: 223–284.

    Google Scholar 

  • Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049.

    Article  CAS  Google Scholar 

  • Tank, J. L. & J. R. Webster, 1998. Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology 79: 2168–2179.

    Article  Google Scholar 

  • United States Environmental Protection Agency, 1983. Methods of Chemical Analysis of Water and Wastes, EPA-600/4-79-020. National Exposure Research Laboratory, Cincinnati.

    Google Scholar 

  • von Schiller, D., E. Martí, J. L. Riera & F. Sabater, 2007. Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology 52: 891–906.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.

    Google Scholar 

  • Wilhelm, C. P., 2006. Assessing phosphorus inputs in the lower Portneuf River through measurement of macrophyte biomass. Journal of the Idaho Academy of Science 42: 32–40.

    Google Scholar 

  • Young, R. G. & A. D. Huryn, 1999. Effects of land use on stream metabolism and organic matter turnover. Ecological Applications 9: 1359–1376.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the NSF-Idaho EPSCoR program (EPS 04-47689), the Idaho Department of Environmental Quality (EPA X7-96009701), and, for Inouye, was completed in part while serving at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Collaborators at the Idaho DEQ (G. Mladenka, M. Rowe, and A. Ray) provided valuable guidance, discussion, and field assistance for this project. The Shoshone-Bannock tribes graciously provided access to study sites on Fort Hall Reservation; we thank S. Matsaw and C. Tanaka for their assistance. C. Baxter, R. Clay, S. Matsaw, S. Mathies, M. Mineau, A. Ruiz, M. Thompson, and C. Waite provided field and/or lab assistance. J. Anderson provided cartographic services for Fig. 1. The chemistry and sonde data were collected as part of the Portneuf Basin Monitoring Program, and is supported by the Center for Ecological Research and Education at Idaho State University, the City of Pocatello, J. R. Simplot Company, the Portneuf Soil and Water Conservation District, the Shoshone-Bannock Tribes, Three Rivers RC&D Council Inc., the United States Environmental Protection Agency, Rapid Creek Research Inc., and the Idaho Departments of Agriculture, Environmental Quality, and Fish and Game.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Marcarelli.

Additional information

Handling editor: D. Ryder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcarelli, A.M., Bechtold, H.A., Rugenski, A.T. et al. Nutrient limitation of biofilm biomass and metabolism in the Upper Snake River basin, southeast Idaho, USA. Hydrobiologia 620, 63–76 (2009). https://doi.org/10.1007/s10750-008-9615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9615-6

Keywords

Navigation