Skip to main content

Advertisement

Log in

Emerging concepts in arrhythmogenic dilated cardiomyopathy

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) represents one of the primary cardiomyopathies and may lead to heart failure and sudden death. Until recently, ventricular arrhythmias were considered to be a direct consequence of the systolic dysfunction of the left ventricle (LV) and guidelines for implantable cardioverter defibrillator implantation were established on this basis. However, the identification of heritable dilated cardiomyopathy phenotypes that presented with mildly impaired or moderate LV dysfunction, with or without chamber dilatation, and ventricular arrhythmias exceeding the degree of the underlying morphological abnormalities lead to the identification of the arrhythmogenic phenotypes and genotypes of DCM. This subset of DCM patients presents phenotypic and in many cases genotypic overlaps with left dominant arrhythmogenic cardiomyopathy (LDAC). LMNA, SCN5A, FLNC, TTN, and RBM20 are the main genes responsible for arrhythmogenic DCM. Moreover, desmosomal genes such as DSP and other non-desmosomal such as DES and PLN have been associated with both LDAC and arrhythmogenic DCM. The aim of this review is to highlight the importance of genetic profiling among DCM patients with disproportionate arrhythmic burden and the significance of the electrocardiogram, cardiac magnetic resonance, Holter monitoring, detailed family history, and other assays in order to identify red flags for arrhythmogenic DCM and proceed to an early preventive approach for sudden cardiac death. A special consideration was given to the phenotypic and genotypic overlap with LDAC. The role of myocarditis as a common disease expression of LDAC and arrhythmogenic DCM is also analyzed supporting the premise of their phenotypic overlap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kuhl U, Maisch B, McKenna WJ, Monserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29(2):270–276. https://doi.org/10.1093/eurheartj/ehm342

    Article  PubMed  Google Scholar 

  2. (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 93(5):841–842. https://doi.org/10.1161/01.CIR.93.5.841

  3. Merlo M, Pivetta A, Pinamonti B, Stolfo D, Zecchin M, Barbati G, Di Lenarda A, Sinagra G (2014) Long-term prognostic impact of therapeutic strategies in patients with idiopathic dilated cardiomyopathy: changing mortality over the last 30 years. Eur J Heart Fail 16(3):317–324. https://doi.org/10.1002/ejhf.16

    Article  CAS  PubMed  Google Scholar 

  4. Hershberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10(9):531–547. https://doi.org/10.1038/nrcardio.2013.105

    Article  CAS  PubMed  Google Scholar 

  5. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  6. Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, Dolan N, Edens TR, Ahn S, Kinan D et al (1993) Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation 88(5 Pt 1):2277–2283. https://doi.org/10.1161/01.cir.88.5.2277

    Article  CAS  PubMed  Google Scholar 

  7. Waagstein F, Bristow MR, Swedberg K, Camerini F, Fowler MB, Silver MA, Gilbert EM, Johnson MR, Goss FG, Hjalmarson A (1993) Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Lancet 342(8885):1441–1446. https://doi.org/10.1016/0140-6736(93)92930-r

    Article  CAS  PubMed  Google Scholar 

  8. Shun-Shin MJ, Zheng SL, Cole GD, Howard JP, Whinnett ZI, Francis DP (2017) Implantable cardioverter defibrillators for primary prevention of death in left ventricular dysfunction with and without ischaemic heart disease: a meta-analysis of 8567 patients in the 11 trials. Eur Heart J 38(22):1738–1746. https://doi.org/10.1093/eurheartj/ehx028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen L, Jhund PS, Petrie MC, Claggett BL, Barlera S, Cleland JGF, Dargie HJ, Granger CB, Kjekshus J, Køber L, Latini R, Maggioni AP, Packer M, Pitt B, Solomon SD, Swedberg K, Tavazzi L, Wikstrand J, Zannad F, Zile MR, McMurray JJV (2017) Declining risk of sudden death in heart failure. N Engl J Med 377(1):41–51. https://doi.org/10.1056/NEJMoa1609758

    Article  PubMed  Google Scholar 

  10. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Bruun NE, Eiskjær H, Brandes A, Thøgersen AM, Gustafsson F, Egstrup K, Videbæk R, Hassager C, Svendsen JH, Høfsten DE, Torp-Pedersen C, Pehrson S (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230. https://doi.org/10.1056/NEJMoa1608029

    Article  PubMed  Google Scholar 

  11. Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, Marwick T, Pinney S, Bellazzi R, Favalli V, Kramer C, Roberts R, Zoghbi WA, Bonow R, Tavazzi L, Fuster V, Narula J (2013) The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J Am Coll Cardiol 62(22):2046–2072. https://doi.org/10.1016/j.jacc.2013.08.1644

    Article  PubMed  Google Scholar 

  12. Petrie MC, Connelly DT, Gardner RS (2018) Who needs an implantable cardioverter-defibrillator? Controversies and opportunities after DANISH. Eur J Heart Fail 20(3):413–416. https://doi.org/10.1002/ejhf.1135

    Article  PubMed  Google Scholar 

  13. Peters S, Kumar S, Elliott P, Kalman JM, Fatkin D (2019) Arrhythmic genotypes in familial dilated cardiomyopathy: implications for genetic testing and clinical management. Heart Lung Circ 28(1):31–38. https://doi.org/10.1016/j.hlc.2018.09.010

    Article  PubMed  Google Scholar 

  14. Spezzacatene A, Sinagra G, Merlo M, Barbati G, Graw SL, Brun F, Slavov D, Di Lenarda A, Salcedo EE, Towbin JA, Saffitz JE, Marcus FI, Zareba W, Taylor MRG, Mestroni L, Familial Cardiomyopathy R (2015) Arrhythmogenic phenotype in dilated cardiomyopathy: natural history and predictors of life-threatening arrhythmias. J Am Heart Assoc 4(10):e002149–e002149. https://doi.org/10.1161/JAHA.115.002149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldberger JJ, Subačius H, Patel T, Cunnane R, Kadish AH (2014) Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol 63(18):1879–1889. https://doi.org/10.1016/j.jacc.2013.12.021

    Article  PubMed  Google Scholar 

  16. Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M (2014) Late gadolinium enhancement on cardiac magnetic resonance predicts adverse cardiovascular outcomes in nonischemic cardiomyopathy. Circ Cardiovasc Imaging 7(2):250–258. https://doi.org/10.1161/CIRCIMAGING.113.001144

    Article  PubMed  Google Scholar 

  17. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, Kirchhof P, Kjeldsen K, Kuck KH, Hernandez-Madrid A, Nikolaou N, Norekval TM, Spaulding C, Van Veldhuisen DJ (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36(41):2793–2867. https://doi.org/10.1093/eurheartj/ehv316

    Article  PubMed  Google Scholar 

  18. Sen-Chowdhry S, Syrris P, Prasad SK, Hughes SE, Merrifield R, Ward D, Pennell DJ, McKenna WJ (2008) Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J Am Coll Cardiol 52(25):2175–2187. https://doi.org/10.1016/j.jacc.2008.09.019

    Article  PubMed  Google Scholar 

  19. Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Bohm M, Duboc D, Gimeno J, de Groote P, Imazio M, Heymans S, Klingel K, Komajda M, Limongelli G, Linhart A, Mogensen J, Moon J, Pieper PG, Seferovic PM, Schueler S, Zamorano JL, Caforio AL, Charron P (2016) Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 37(23):1850–1858. https://doi.org/10.1093/eurheartj/ehv727

    Article  PubMed  Google Scholar 

  20. Protonotarios A, Patrianakos A, Spanoudaki E, Kochiadakis G, Michalodimitrakis E, Vardas P (2013) Left dominant arrhythmogenic cardiomyopathy: a morbid association of ventricular arrhythmias and unexplained infero-lateral T-wave inversion. J Electrocardiol 46(4):352–355. https://doi.org/10.1016/j.jelectrocard.2013.03.011

    Article  PubMed  Google Scholar 

  21. Hoorntje ET, te Rijdt WP, James CA, Pilichou K, Basso C, Judge DP, Bezzina CR, van Tintelen JP (2017) Arrhythmogenic cardiomyopathy: pathology, genetics, and concepts in pathogenesis. Cardiovasc Res 113(12):1521–1531. https://doi.org/10.1093/cvr/cvx150

    Article  CAS  PubMed  Google Scholar 

  22. Bennett RG, Haqqani HM, Berruezo A, Della Bella P, Marchlinski FE, Hsu C-J, Kumar S (2019) Arrhythmogenic cardiomyopathy in 2018–2019: ARVC/ALVC or Both? Heart Lung Circ 28(1):164–177. https://doi.org/10.1016/j.hlc.2018.10.013

    Article  PubMed  Google Scholar 

  23. Merlo M, Gentile P, Naso P, Sinagra G (2017) The natural history of dilated cardiomyopathy: how has it changed? J Cardiovasc Med 18:e161–e165. https://doi.org/10.2459/jcm.0000000000000459

    Article  Google Scholar 

  24. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE, Judge DP, Le Marec H, McKenna WJ, Schulze-Bahr E, Semsarian C, Towbin JA, Watkins H, Wilde A, Wolpert C, Zipes DP (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8(8):1308–1339. https://doi.org/10.1016/j.hrthm.2011.05.020

    Article  PubMed  Google Scholar 

  25. Meune C, Van Berlo JH, Anselme F, Bonne G, Pinto YM, Duboc D (2006) Primary prevention of sudden death in patients with lamin A/C gene mutations. N Engl J Med 354(2):209–210. https://doi.org/10.1056/NEJMc052632

    Article  CAS  PubMed  Google Scholar 

  26. Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, Morales A, Taylor MRG, Vatta M, Ware SM (2018) Genetic evaluation of cardiomyopathy—a Heart Failure Society of America Practice Guideline. J Card Fail 24(5):281–302. https://doi.org/10.1016/j.cardfail.2018.03.004

    Article  PubMed  Google Scholar 

  27. Corrado D, Basso C, Judge DP (2017) Arrhythmogenic cardiomyopathy. Circ Res 121(7):784–802. https://doi.org/10.1161/CIRCRESAHA.117.309345

    Article  CAS  PubMed  Google Scholar 

  28. Peretto G, Sala S, Benedetti S, Di Resta C, Gigli L, Ferrari M, Della Bella P (2018) Updated clinical overview on cardiac laminopathies: an electrical and mechanical disease. Nucleus 9(1):380–391. https://doi.org/10.1080/19491034.2018.1489195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Baldinger SH, Gandjbakhch E, Maury P, Sellal J-M, Androulakis AFA, Waintraub X, Charron P, Rollin A, Richard P, Stevenson WG, Macintyre CJ, Ho CY, Thompson T, Vohra JK, Kalman JM, Zeppenfeld K, Sacher F, Tedrow UB, Lakdawala NK (2016) Long-term arrhythmic and nonarrhythmic outcomes of lamin A/C mutation carriers. J Am Coll Cardiol 68(21):2299–2307. https://doi.org/10.1016/j.jacc.2016.08.058

    Article  CAS  PubMed  Google Scholar 

  30. van Tintelen JP, Tio RA, Kerstjens-Frederikse WS, van Berlo JH, Boven LG, Suurmeijer AJH, White SJ, den Dunnen JT, te Meerman GJ, Vos YJ, van der Hout AH, Osinga J, van den Berg MP, van Veldhuisen DJ, Buys CHCM, Hofstra RMW, Pinto YM (2007) Severe myocardial fibrosis caused by a deletion of the 5′ end of the lamin A/C gene. J Am Coll Cardiol 49(25):2430–2439. https://doi.org/10.1016/j.jacc.2007.02.063

    Article  CAS  PubMed  Google Scholar 

  31. Gigli M, Merlo M, Graw SL, Barbati G, Rowland TJ, Slavov DB, Stolfo D, Haywood ME, Dal Ferro M, Altinier A, Ramani F, Brun F, Cocciolo A, Puggia I, Morea G, McKenna WJ, La Rosa FG, Taylor MRG, Sinagra G, Mestroni L (2019) Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J Am Coll Cardiol 74(11):1480–1490. https://doi.org/10.1016/j.jacc.2019.06.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fatkin D, MacRae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ, Spudich S, De Girolami U, Seidman JG, Muntoni F, Müehle G, Johnson W, McDonough B, Seidman CE (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341(23):1715–1724. https://doi.org/10.1056/nejm199912023412302

    Article  CAS  PubMed  Google Scholar 

  33. van Rijsingen IA, Arbustini E, Elliott PM, Mogensen J, Hermans-van Ast JF, van der Kooi AJ, van Tintelen JP, van den Berg MP, Pilotto A, Pasotti M, Jenkins S, Rowland C, Aslam U, Wilde AA, Perrot A, Pankuweit S, Zwinderman AH, Charron P, Pinto YM (2012) Risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers a European cohort study. J Am Coll Cardiol 59(5):493–500. https://doi.org/10.1016/j.jacc.2011.08.078

    Article  CAS  PubMed  Google Scholar 

  34. Amin AS (2014) <em>SCN5A</em>-related dilated cardiomyopathy: what do we know? Heart Rhythm 11(8):1454–1455. https://doi.org/10.1016/j.hrthm.2014.05.031

    Article  PubMed  Google Scholar 

  35. Gosselin-Badaroudine P, Keller DI, Huang H, Pouliot V, Chatelier A, Osswald S, Brink M, Chahine M (2012) A proton leak current through the cardiac sodium channel is linked to mixed arrhythmia and the dilated cardiomyopathy phenotype. PLoS One 7(5):e38331. https://doi.org/10.1371/journal.pone.0038331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE, Slavov D, Zhu X, Caldwell JH, Mestroni L (2011) SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57(21):2160–2168. https://doi.org/10.1016/j.jacc.2010.09.084

    Article  PubMed  Google Scholar 

  37. Zaklyazminskaya E, Dzemeshkevich S (2016) The role of mutations in the SCN5A gene in cardiomyopathies. Biochim Biophys Acta 1863(7, part B):1799–1805. https://doi.org/10.1016/j.bbamcr.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  38. Te Riele AS, Agullo-Pascual E, James CA, Leo-Macias A, Cerrone M, Zhang M, Lin X, Lin B, Sobreira NL, Amat-Alarcon N, Marsman RF, Murray B, Tichnell C, van der Heijden JF, Dooijes D, van Veen TA, Tandri H, Fowler SJ, Hauer RN, Tomaselli G, van den Berg MP, Taylor MR, Brun F, Sinagra G, Wilde AA, Mestroni L, Bezzina CR, Calkins H, Peter van Tintelen J, Bu L, Delmar M, Judge DP (2017) Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res 113(1):102–111. https://doi.org/10.1093/cvr/cvw234

    Article  CAS  Google Scholar 

  39. Wilde AAM, Amin AS (2018) Clinical spectrum of SCN5A mutations: long QT syndrome, Brugada syndrome, and cardiomyopathy. JACC Clin Electrophysiol 4(5):569–579. https://doi.org/10.1016/j.jacep.2018.03.006

    Article  PubMed  Google Scholar 

  40. Gontier Y, Taivainen A, Fontao L, Sonnenberg A, van der Flier A, Carpen O, Faulkner G, Borradori L (2005) The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins. J Cell Sci 118(16):3739. https://doi.org/10.1242/jcs.02484

    Article  CAS  PubMed  Google Scholar 

  41. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2(2):138–145. https://doi.org/10.1038/35052082

    Article  CAS  PubMed  Google Scholar 

  42. van der Flier A, Sonnenberg A (2001) Structural and functional aspects of filamins. Biochim Biophys Acta 1538(2):99–117. https://doi.org/10.1016/S0167-4889(01)00072-6

    Article  PubMed  Google Scholar 

  43. Guergueltcheva V, Peeters K, Baets J, Ceuterick-de Groote C, Martin JJ, Suls A, De Vriendt E, Mihaylova V, Chamova T, Almeida-Souza L, Ydens E, Tzekov C, Hadjidekov G, Gospodinova M, Storm K, Reyniers E, Bichev S, van der Ven PFM, Fürst DO, Mitev V, Lochmüller H, Timmerman V, Tournev I, De Jonghe P, Jordanova A (2011) Distal myopathy with upper limb predominance caused by <em>filamin C</em> haploinsufficiency. Neurology 77(24):2105–2114. https://doi.org/10.1212/WNL.0b013e31823dc51e

    Article  CAS  PubMed  Google Scholar 

  44. Kley RA, Hellenbroich Y, van der Ven PFM, Fürst DO, Huebner A, Bruchertseifer V, Peters SA, Heyer CM, Kirschner J, Schröder R, Fischer D, Müller K, Tolksdorf K, Eger K, Germing A, Brodherr T, Reum C, Walter MC, Lochmüller H, Ketelsen U-P, Vorgerd M (2007) Clinical and morphological phenotype of the filamin myopathy: a study of 31 German patients. Brain 130(12):3250–3264. https://doi.org/10.1093/brain/awm271

    Article  PubMed  Google Scholar 

  45. Vorgerd M, van der Ven PFM, Bruchertseifer V, Löwe T, Kley RA, Schröder R, Lochmüller H, Himmel M, Koehler K, Fürst DO, Huebner A (2005) A mutation in the dimerization domain of filamin C causes a novel type of autosomal dominant myofibrillar myopathy. Am J Hum Genet 77(2):297–304. https://doi.org/10.1086/431959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Begay RL, Tharp CA, Martin A, Graw SL, Sinagra G, Miani D, Sweet ME, Slavov DB, Stafford N, Zeller MJ, Alnefaie R, Rowland TJ, Brun F, Jones KL, Gowan K, Mestroni L, Garrity DM, Taylor MRG (2016) FLNC gene splice mutations cause dilated cardiomyopathy. JACC Basic Transl Sci 1(5):344–359. https://doi.org/10.1016/j.jacbts.2016.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ortiz-Genga MF, Cuenca S, Dal Ferro M, Zorio E, Salgado-Aranda R, Climent V, Padrón-Barthe L, Duro-Aguado I, Jiménez-Jáimez J, Hidalgo-Olivares VM, García-Campo E, Lanzillo C, Suárez-Mier MP, Yonath H, Marcos-Alonso S, Ochoa JP, Santomé JL, García-Giustiniani D, Rodríguez-Garrido JL, Domínguez F, Merlo M, Palomino J, Peña ML, Trujillo JP, Martín-Vila A, Stolfo D, Molina P, Lara-Pezzi E, Calvo-Iglesias FE, Nof E, Calò L, Barriales-Villa R, Gimeno-Blanes JR, Arad M, García-Pavía P, Monserrat L (2016) Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol 68(22):2440–2451. https://doi.org/10.1016/j.jacc.2016.09.927

    Article  CAS  PubMed  Google Scholar 

  48. Begay RL, Graw SL, Sinagra G, Asimaki A, Rowland TJ, Slavov DB, Gowan K, Jones KL, Brun F, Merlo M, Miani D, Sweet M, Devaraj K, Wartchow EP, Gigli M, Puggia I, Salcedo EE, Garrity DM, Ambardekar AV, Buttrick P, Reece TB, Bristow MR, Saffitz JE, Mestroni L, Taylor MRG (2018) Filamin C truncation mutations are associated with arrhythmogenic dilated cardiomyopathy and changes in the cell–cell adhesion structures. JACC Clin Electrophysiol 4(4):504–514. https://doi.org/10.1016/j.jacep.2017.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  49. Begay RL, Graw S, Sinagra G, Merlo M, Slavov D, Gowan K, Jones KL, Barbati G, Spezzacatene A, Brun F, Di Lenarda A, Smith JE, Granzier HL, Mestroni L, Taylor M (2015) Role of Titin missense variants in dilated cardiomyopathy. J Am Heart Assoc 4(11). https://doi.org/10.1161/jaha.115.002645

  50. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, Conner L, DePalma SR, McDonough B, Sparks E, Teodorescu DL, Cirino AL, Banner NR, Pennell DJ, Graw S, Merlo M, Di Lenarda A, Sinagra G, Bos JM, Ackerman MJ, Mitchell RN, Murry CE, Lakdawala NK, Ho CY, Barton PJ, Cook SA, Mestroni L, Seidman JG, Seidman CE (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7):619–628. https://doi.org/10.1056/NEJMoa1110186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, Buchan RJ, Walsh R, John S, Wilkinson S, Mazzarotto F, Felkin LE, Gong S, MacArthur JA, Cunningham F, Flannick J, Gabriel SB, Altshuler DM, Macdonald PS, Heinig M, Keogh AM, Hayward CS, Banner NR, Pennell DJ, O’Regan DP, San TR, de Marvao A, Dawes TJ, Gulati A, Birks EJ, Yacoub MH, Radke M, Gotthardt M, Wilson JG, O’Donnell CJ, Prasad SK, Barton PJ, Fatkin D, Hubner N, Seidman JG, Seidman CE, Cook SA (2015) Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med 7(270):270ra276. https://doi.org/10.1126/scitranslmed.3010134

    Article  CAS  Google Scholar 

  52. Franaszczyk M, Chmielewski P, Truszkowska G, Stawinski P, Michalak E, Rydzanicz M, Sobieszczanska-Malek M, Pollak A, Szczygieł J, Kosinska J, Parulski A, Stoklosa T, Tarnowska A, Machnicki MM, Foss-Nieradko B, Szperl M, Sioma A, Kusmierczyk M, Grzybowski J, Zielinski T, Ploski R, Bilinska ZT (2017) Titin truncating variants in dilated cardiomyopathy – prevalence and genotype-phenotype correlations. PLoS One 12(1):e0169007. https://doi.org/10.1371/journal.pone.0169007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verdonschot JAJ, Hazebroek MR, Derks KWJ, Barandiaran Aizpurua A, Merken JJ, Wang P, Bierau J, van den Wijngaard A, Schalla SM, Abdul Hamid MA, van Bilsen M, van Empel VPM, Knackstedt C, Brunner-La Rocca HP, Brunner HG, Krapels IPC, Heymans SRB (2018) Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long-term life-threatening arrhythmias. Eur Heart J 39(10):864–873. https://doi.org/10.1093/eurheartj/ehx808

    Article  CAS  PubMed  Google Scholar 

  54. Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I, Salazar-Mendiguchía J, García-Pinilla JM, Pascual-Figal DA, Nuñez J, Guzzo-Merello G, Gonzalez-Vioque E, Bardaji A, Manito N, López-Garrido MA, Padron-Barthe L, Edwards E, Whiffin N, Walsh R, Buchan RJ, Midwinter W, Wilk A, Prasad S, Pantazis A, Baski J, O'Regan DP, Alonso-Pulpon L, Cook SA, Lara-Pezzi E, Barton PJ, Garcia-Pavia P (2018) Genetic etiology for alcohol-induced cardiac toxicity. J Am Coll Cardiol 71(20):2293–2302. https://doi.org/10.1016/j.jacc.2018.03.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jansweijer JA, Nieuwhof K, Russo F, Hoorntje ET, Jongbloed JDH, Lekanne Deprez RH, Postma AV, Bronk M, van Rijsingen IAW, de Haij S, Biagini E, van Haelst PL, van Wijngaarden J, van den Berg MP, Wilde AAM, Mannens MMAM, de Boer RA, van Spaendonck-Zwarts KY, van Tintelen JP, Pinto YM (2017) Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail 19(4):512–521. https://doi.org/10.1002/ejhf.673

    Article  CAS  PubMed  Google Scholar 

  56. Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Muller S, Kayvanpour E, Vogel B, Sedaghat-Hamedani F, Lim WK, Zhao X, Fradkin D, Kohler D, Fischer S, Franke J, Marquart S, Barb I, Li DT, Amr A, Ehlermann P, Mereles D, Weis T, Hassel S, Kremer A, King V, Wirsz E, Isnard R, Komajda M, Serio A, Grasso M, Syrris P, Wicks E, Plagnol V, Lopes L, Gadgaard T, Eiskjaer H, Jorgensen M, Garcia-Giustiniani D, Ortiz-Genga M, Crespo-Leiro MG, Deprez RH, Christiaans I, van Rijsingen IA, Wilde AA, Waldenstrom A, Bolognesi M, Bellazzi R, Morner S, Bermejo JL, Monserrat L, Villard E, Mogensen J, Pinto YM, Charron P, Elliott P, Arbustini E, Katus HA, Meder B (2015) Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J 36(18):1123–1135a. https://doi.org/10.1093/eurheartj/ehu301

    Article  CAS  PubMed  Google Scholar 

  57. Brauch KM, Karst ML, Herron KJ, de Andrade M, Pellikka PA, Rodeheffer RJ, Michels VV, Olson TM (2009) Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol 54(10):930–941. https://doi.org/10.1016/j.jacc.2009.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li D, Morales A, Gonzalez-Quintana J, Norton N, Siegfried JD, Hofmeyer M, Hershberger RE (2010) Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci 3(3):90–97. https://doi.org/10.1111/j.1752-8062.2010.00198.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Refaat MM, Lubitz SA, Makino S, Islam Z, Frangiskakis JM, Mehdi H, Gutmann R, Zhang ML, Bloom HL, MacRae CA, Dudley SC, Shalaby AA, Weiss R, McNamara DM, London B, Ellinor PT (2012) Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm 9(3):390–396. https://doi.org/10.1016/j.hrthm.2011.10.016

    Article  PubMed  Google Scholar 

  60. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, Maatz H, Schulz H, Li S, Parrish AM, Dauksaite V, Vakeel P, Klaassen S, Gerull B, Thierfelder L, Regitz-Zagrosek V, Hacker TA, Saupe KW, Dec GW, Ellinor PT, MacRae CA, Spallek B, Fischer R, Perrot A, Ozcelik C, Saar K, Hubner N, Gotthardt M (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18(5):766–773. https://doi.org/10.1038/nm.2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maatz H, Jens M, Liss M, Schafer S, Heinig M, Kirchner M, Adami E, Rintisch C, Dauksaite V, Radke MH, Selbach M, Barton PJ, Cook SA, Rajewsky N, Gotthardt M, Landthaler M, Hubner N (2014) RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J Clin Invest 124(8):3419–3430. https://doi.org/10.1172/jci74523

    Article  PubMed  PubMed Central  Google Scholar 

  62. van den Hoogenhof Maarten MG, Beqqali A, Amin Ahmad S, van der Made I, Aufiero S, Khan Mohsin AF, Schumacher Cees A, Jansweijer Joeri A, van Spaendonck-Zwarts KY, Remme Carol A, Backs J, Verkerk Arie O, Baartscheer A, Pinto Yigal M, Creemers Esther E (2018) RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138(13):1330–1342. https://doi.org/10.1161/CIRCULATIONAHA.117.031947

    Article  CAS  PubMed  Google Scholar 

  63. Wyles SP, Li X, Hrstka SC, Reyes S, Oommen S, Beraldi R, Edwards J, Terzic A, Olson TM, Nelson TJ (2016) Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells. Hum Mol Genet 25(2):254–265. https://doi.org/10.1093/hmg/ddv468

    Article  CAS  PubMed  Google Scholar 

  64. Groeneweg JA, van der Heijden JF, Dooijes D, van Veen TA, van Tintelen JP, Hauer RN (2014) Arrhythmogenic cardiomyopathy: diagnosis, genetic background, and risk management. Neth Hear J 22(7–8):316–325. https://doi.org/10.1007/s12471-014-0563-7

    Article  CAS  Google Scholar 

  65. Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta Biomembr 1778(3):572–587. https://doi.org/10.1016/j.bbamem.2007.07.014

    Article  CAS  Google Scholar 

  66. Xu Z, Zhu W, Wang C, Huang L, Zhou Q, Hu J, Cheng X, Hong K (2017) Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: a systematic review and meta-analysis. Sci Rep 7:41387. https://doi.org/10.1038/srep41387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Groeneweg JA, Bhonsale A, James CA, te Riele AS, Dooijes D, Tichnell C, Murray B, Wiesfeld AC, Sawant AC, Kassamali B, Atsma DE, Volders PG, de Groot NM, de Boer K, Zimmerman SL, Kamel IR, van der Heijden JF, Russell SD, Jan Cramer M, Tedford RJ, Doevendans PA, van Veen TA, Tandri H, Wilde AA, Judge DP, van Tintelen JP, Hauer RN, Calkins H (2015) Clinical presentation, long-term follow-up, and outcomes of 1001 Arrhythmogenic right ventricular dysplasia/cardiomyopathy patients and family members. Circ Cardiovasc Genet 8(3):437–446. https://doi.org/10.1161/circgenetics.114.001003

    Article  CAS  PubMed  Google Scholar 

  68. Karmouch J, Protonotarios A, Syrris P (2018) Genetic basis of arrhythmogenic cardiomyopathy. Curr Opin Cardiol 33(3):276–281. https://doi.org/10.1097/hco.0000000000000509

    Article  PubMed  Google Scholar 

  69. Elliott P, O'Mahony C, Syrris P, Evans A, Sorensen CR, Sheppard MN, Carr-White G, Pantazis A, McKenna WJ (2010) Prevalence of desmosomal protein gene mutations in patients with dilated cardiomyopathy. Circ Cardiovasc Genet 3(4):314–322. https://doi.org/10.1161/CIRCGENETICS.110.937805

    Article  CAS  PubMed  Google Scholar 

  70. Rigato I, Bauce B, Rampazzo A, Zorzi A, Pilichou K, Mazzotti E, Migliore F, Marra MP, Lorenzon A, Bortoli MD, Calore M, Nava A, Daliento L, Gregori D, Iliceto S, Thiene G, Basso C, Corrado D (2013) Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene– related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet 6(6):533–542. https://doi.org/10.1161/CIRCGENETICS.113.000288

    Article  CAS  PubMed  Google Scholar 

  71. Castelletti S, Vischer AS, Syrris P, Crotti L, Spazzolini C, Ghidoni A, Parati G, Jenkins S, Kotta M-C, McKenna WJ, Schwartz PJ, Pantazis A (2017) Desmoplakin missense and non-missense mutations in arrhythmogenic right ventricular cardiomyopathy: genotype-phenotype correlation. Int J Cardiol 249:268–273. https://doi.org/10.1016/j.ijcard.2017.05.018

    Article  PubMed  Google Scholar 

  72. Bhonsale A, Groeneweg JA, James CA, Dooijes D, Tichnell C, Jongbloed JDH, Murray B, te Riele ASJM, van den Berg MP, Bikker H, Atsma DE, de Groot NM, Houweling AC, van der Heijden JF, Russell SD, Doevendans PA, van Veen TA, Tandri H, Wilde AA, Judge DP, van Tintelen JP, Calkins H, Hauer RN (2015) Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J 36(14):847–855. https://doi.org/10.1093/eurheartj/ehu509

    Article  CAS  PubMed  Google Scholar 

  73. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9(18):2761–2766. https://doi.org/10.1093/hmg/9.18.2761

    Article  CAS  PubMed  Google Scholar 

  74. Norgett EE, Lucke TW, Bowers B, Munro CS, Leigh IM, Kelsell DP (2006) Early death from cardiomyopathy in a family with autosomal dominant striate palmoplantar keratoderma and woolly hair associated with a novel insertion mutation in desmoplakin. J Investig Dermatol 126(7):1651–1654. https://doi.org/10.1038/sj.jid.5700291

    Article  CAS  PubMed  Google Scholar 

  75. Pigors M, Schwieger-Briel A, Cosgarea R, Diaconeasa A, Bruckner-Tuderman L, Fleck T, Has C (2015) Desmoplakin mutations with palmoplantar keratoderma, woolly hair and cardiomyopathy. Acta Derm Venereol 95(3):337–340. https://doi.org/10.2340/00015555-1974

    Article  CAS  PubMed  Google Scholar 

  76. Li GL, Saguner AM, Fontaine GH (2018) Naxos disease: from the origin to today. Orphanet J Rare Dis 13(1):74. https://doi.org/10.1186/s13023-018-0814-6

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hermida A, Fressart V, Hidden-Lucet F, Donal E, Probst V, Deharo J, Chevalier P, Klug D, Mansencal N, Delacretaz E, Cosnay P, Scanu P, Extramiana F, Charron P, Gandjbakhch E (2017) 745High risk of heart failure in desmoglein-2 mutation carriers in arrhythmogenic right ventricular dysplasia/cardiomyopathy. EP. Europace 19(suppl_3):iii132. https://doi.org/10.1093/ehjci/eux146

    Article  Google Scholar 

  78. Kato K, Takahashi N, Fujii Y, Umehara A, Nishiuchi S, Makiyama T, Ohno S, Horie M (2016) LMNA cardiomyopathy detected in Japanese arrhythmogenic right ventricular cardiomyopathy cohort. J Cardiol 68(4):346–351. https://doi.org/10.1016/j.jjcc.2015.10.013

    Article  PubMed  Google Scholar 

  79. Duthoit G, Fressart V, Hidden-Lucet F, Simon F, Kattygnarath D, Charron P, Himbert C, Aouate P, Guicheney P, Lecarpentier Y, Frank R, Hébert J-L (2012) Brugada ECG pattern: a physiopathological prospective study based on clinical, electrophysiological, angiographic, and genetic findings. Front Physiol 3(474). https://doi.org/10.3389/fphys.2012.00474

  80. Klauke B, Kossmann S, Gaertner A, Brand K, Stork I, Brodehl A, Dieding M, Walhorn V, Anselmetti D, Gerdes D, Bohms B, Schulz U, Zu Knyphausen E, Vorgerd M, Gummert J, Milting H (2010) De novo desmin-mutation N116S is associated with arrhythmogenic right ventricular cardiomyopathy. Hum Mol Genet 19(23):4595–4607. https://doi.org/10.1093/hmg/ddq387

    Article  CAS  PubMed  Google Scholar 

  81. van der Zwaag PA, van Rijsingen IAW, Asimaki A, Jongbloed JDH, van Veldhuisen DJ, Wiesfeld ACP, Cox MGPJ, van Lochem LT, de Boer RA, Hofstra RMW, Christiaans I, van Spaendonck-Zwarts KY, dit Lekanne Deprez RH, Judge DP, Calkins H, Suurmeijer AJH, Hauer RNW, Saffitz JE, Wilde AAM, van den Berg MP, van Tintelen JP (2012) Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail 14(11):1199–1207. https://doi.org/10.1093/eurjhf/hfs119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hodgkinson KA, Connors SP, Merner N, Haywood A, Young TL, McKenna WJ, Gallagher B, Curtis F, Bassett AS, Parfrey PS (2013) The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43. Clin Genet 83(4):321–331. https://doi.org/10.1111/j.1399-0004.2012.01919.x

    Article  CAS  PubMed  Google Scholar 

  83. Merner ND, Hodgkinson KA, Haywood AFM, Connors S, French VM, Drenckhahn J-D, Kupprion C, Ramadanova K, Thierfelder L, McKenna W, Gallagher B, Morris-Larkin L, Bassett AS, Parfrey PS, Young T-L (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82(4):809–821. https://doi.org/10.1016/j.ajhg.2008.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H, Thiene G, Towbin JA, Tsatsopoulou A, Wichter T, Zareba W (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J 31(7):806–814. https://doi.org/10.1093/eurheartj/ehq025

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hunold P, Schlosser T, Vogt FM, Eggebrecht H, Schmermund A, Bruder O, Schuler WO, Barkhausen J (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184(5):1420–1426. https://doi.org/10.2214/ajr.184.5.01841420

    Article  PubMed  Google Scholar 

  86. Satoh H, Sano M, Suwa K, Saitoh T, Nobuhara M, Saotome M, Urushida T, Katoh H, Hayashi H (2014) Distribution of late gadolinium enhancement in various types of cardiomyopathies: significance in differential diagnosis, clinical features and prognosis. World J Cardiol 6(7):585–601. https://doi.org/10.4330/wjc.v6.i7.585

    Article  PubMed  PubMed Central  Google Scholar 

  87. Corrado D, Wichter T, Link Mark S, Hauer Richard NW, Marchlinski Frank E, Anastasakis A, Bauce B, Basso C, Brunckhorst C, Tsatsopoulou A, Tandri H, Paul M, Schmied C, Pelliccia A, Duru F, Protonotarios N, Estes NAM, McKenna William J, Thiene G, Marcus Frank I, Calkins H (2015) Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation 132(5):441–453. https://doi.org/10.1161/CIRCULATIONAHA.115.017944

    Article  PubMed  PubMed Central  Google Scholar 

  88. Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM 3rd, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W (2019) 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 16(11):e301–e372. https://doi.org/10.1016/j.hrthm.2019.05.007

    Article  PubMed  Google Scholar 

  89. Saj M, Bilinska ZT, Tarnowska A, Sioma A, Bolongo P, Sobieszczanska-Malek M, Michalak E, Golen D, Mazurkiewicz L, Malek L, Walczak E, Fidzianska A, Grzybowski J, Przybylski A, Zielinski T, Korewicki J, Tesson F, Ploski R (2013) LMNA mutations in Polish patients with dilated cardiomyopathy: prevalence, clinical characteristics, and in vitro studies. BMC Med Genet 14:55–55. https://doi.org/10.1186/1471-2350-14-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kindermann I, Kindermann M, Kandolf R, Klingel K, Bultmann B, Muller T, Lindinger A, Bohm M (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118(6):639–648. https://doi.org/10.1161/circulationaha.108.769489

    Article  PubMed  Google Scholar 

  91. Anzini M, Merlo M, Sabbadini G, Barbati G, Finocchiaro G, Pinamonti B, Salvi A, Perkan A, Di Lenarda A, Bussani R, Bartunek J, Sinagra G (2013) Long-term evolution and prognostic stratification of biopsy-proven active myocarditis. Circulation 128(22):2384–2394. https://doi.org/10.1161/circulationaha.113.003092

    Article  PubMed  Google Scholar 

  92. Grogan M, Redfield MM, Bailey KR, Reeder GS, Gersh BJ, Edwards WD, Rodeheffer RJ (1995) Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 26(1):80–84. https://doi.org/10.1016/0735-1097(95)00148-s

    Article  CAS  PubMed  Google Scholar 

  93. Assomull RG, Lyne JC, Keenan N, Gulati A, Bunce NH, Davies SW, Pennell DJ, Prasad SK (2007) The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries. Eur Heart J 28(10):1242–1249. https://doi.org/10.1093/eurheartj/ehm113

    Article  CAS  PubMed  Google Scholar 

  94. Basso C, Thiene G, Nava A (2006) Letter regarding article by Norman et al. “novel mutation in desmoplakin causes arrhythmogenic left ventricular cardiomyopathy”. Circulation 113(5):e68; author reply e69. https://doi.org/10.1161/circulationaha.105.581868

    Article  PubMed  Google Scholar 

  95. De Cobelli F, Pieroni M, Esposito A, Chimenti C, Belloni E, Mellone R, Canu T, Perseghin G, Gaudio C, Maseri A, Frustaci A, Del Maschio A (2006) Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol 47(8):1649–1654. https://doi.org/10.1016/j.jacc.2005.11.067

    Article  PubMed  Google Scholar 

  96. Sen-Chowdhry S, Syrris P, McKenna WJ (2005) Desmoplakin disease in arrhythmogenic right ventricular cardiomyopathy: early genotype–phenotype studies. The opinions expressed in this article are not necessarily those of the editors of the European heart journal or of the European society of cardiology. Eur Heart J 26(16):1582–1584. https://doi.org/10.1093/eurheartj/ehi343

    Article  CAS  PubMed  Google Scholar 

  97. Sen-Chowdhry S, Syrris P, McKenna WJ (2007) Role of genetic analysis in the management of patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 50(19):1813–1821. https://doi.org/10.1016/j.jacc.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  98. Bauce B, Basso C, Rampazzo A, Beffagna G, Daliento L, Frigo G, Malacrida S, Settimo L, Danieli G, Thiene G, Nava A (2005) Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J 26(16):1666–1675. https://doi.org/10.1093/eurheartj/ehi341

    Article  CAS  PubMed  Google Scholar 

  99. Merlo M, Gentile P, Artico J, Cannata A, Paldino A, De Angelis G, Barbati G, Alonge M, Gigli M, Pinamonti B, Ramani F, Zecchin M, Pirozzi F, Stolfo D, Sinagra G (2019) Arrhythmic risk stratification in patients with dilated cardiomyopathy and intermediate left ventricular dysfunction. J Cardiovasc Med (Hagerstown) 20(5):343–350. https://doi.org/10.2459/jcm.0000000000000792

    Article  Google Scholar 

  100. Corrado D, Link MS, Calkins H (2017) Arrhythmogenic right ventricular Cardiomyopathy. N Engl J Med 376(1):61–72. https://doi.org/10.1056/NEJMra1509267

    Article  CAS  PubMed  Google Scholar 

  101. Bosman LP, Sammani A, James CA, Cadrin-Tourigny J, Calkins H, van Tintelen JP, Hauer RNW, Asselbergs FW, te Riele ASJM (2018) Predicting arrhythmic risk in arrhythmogenic right ventricular cardiomyopathy: a systematic review and meta-analysis. Heart Rhythm 15(7):1097–1107. https://doi.org/10.1016/j.hrthm.2018.01.031

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Thomas Zegkos, Theofilos Panagiotidis, and Despoina Parcharidou. The first draft of the manuscript was written by Thomas Zegkos, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thomas Zegkos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegkos, T., Panagiotidis, T., Parcharidou, D. et al. Emerging concepts in arrhythmogenic dilated cardiomyopathy. Heart Fail Rev 26, 1219–1229 (2021). https://doi.org/10.1007/s10741-020-09933-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09933-z

Keywords

Navigation