Skip to main content

Advertisement

Log in

Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Inflammation and fibrosis are intertwined mechanisms fundamentally involved in heart failure. Detailed deciphering gene expression perturbations and cell–cell interactions of leukocytes and non-myocytes is required to understand cell-type-specific pathology in the failing human myocardium. To this end, we performed single-cell RNA sequencing and single T cell receptor sequencing of 200,615 cells in both human dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) hearts. We sampled both lesion and mild-lesion tissues from each heart to sequentially capture cellular and molecular alterations to different extents of cardiac fibrosis. By which, left (lesion) and right ventricle (mild-lesion) for DCM hearts were harvest while infarcted (lesion) and non-infarcted area (mild-lesion) were dissected from ICM hearts. A novel transcription factor AEBP1 was identified as a crucial cardiac fibrosis regulator in ACTA2+ myofibroblasts. Within fibrotic myocardium, an infiltration of a considerable number of leukocytes was witnessed, especially cytotoxic and exhausted CD8+ T cells and pro-inflammatory CD4+ T cells. Furthermore, a subset of tissue-resident macrophage, CXCL8hiCCR2+HLA-DRhi macrophage was particularly identified in severely fibrotic area, which interacted with activated endothelial cell via DARC, that potentially facilitate leukocyte recruitment and infiltration in human heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086. https://doi.org/10.1038/nmeth.4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, Lindner D (2019) Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 114:19. https://doi.org/10.1007/s00395-019-0722-5

    Article  CAS  PubMed  Google Scholar 

  3. Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, Kovacs A, Epelman S, Artyomov M, Kreisel D, Lavine KJ (2019) Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ Res 124:263–278. https://doi.org/10.1161/CIRCRESAHA.118.314028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bajpai G, Schneider C, Wong N, Bredemeyer A, Hulsmans M, Nahrendorf M, Epelman S, Kreisel D, Liu Y, Itoh A, Shankar TS, Selzman CH, Drakos SG, Lavine KJ (2018) The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med 24:1234–1245. https://doi.org/10.1038/s41591-018-0059-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balamurugan K, Sharan S, Klarmann KD, Zhang Y, Coppola V, Summers GH, Roger T, Morrison DK, Keller JR, Sterneck E (2013) FBXW7α attenuates inflammatory signalling by downregulating C/EBPδ and its target gene Tlr4. Nat Commun 4:1662–1662. https://doi.org/10.1038/ncomms2677

    Article  CAS  PubMed  Google Scholar 

  6. Bansal SS, Ismahil MA, Goel M, Zhou G, Rokosh G, Hamid T, Prabhu SD (2019) Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139:206–221. https://doi.org/10.1161/circulationaha.118.036065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blackburn PR, Xu Z, Tumelty KE, Zhao RW, Monis WJ, Harris KG, Gass JM, Cousin MA, Boczek NJ, Mitkov MV, Cappel MA, Francomano CA, Parisi JE, Klee EW, Faqeih E, Alkuraya FS, Layne MD, McDonnell NB, Atwal PS (2018) Bi-allelic Alterations in AEBP1 lead to defective collagen assembly and connective tissue structure resulting in a variant of Ehlers-Danlos syndrome. Am J Hum Genet 102:696–705. https://doi.org/10.1016/j.ajhg.2018.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chihara N, Madi A, Kondo T, Zhang H, Acharya N, Singer M, Nyman J, Marjanovic ND, Kowalczyk MS, Wang C, Kurtulus S, Law T, Etminan Y, Nevin J, Buckley CD, Burkett PR, Buenrostro JD, Rozenblatt-Rosen O, Anderson AC, Regev A, Kuchroo VK (2018) Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 558:454–459. https://doi.org/10.1038/s41586-018-0206-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Choudhury RH, Dunk CE, Lye SJ, Aplin JD, Harris LK, Jones RL (2017) Extravillous trophoblast and endothelial cell crosstalk mediates leukocyte infiltration to the early remodeling decidual spiral arteriole wall. J Immunol 198:4115–4128. https://doi.org/10.4049/jimmunol.1601175

    Article  CAS  PubMed  Google Scholar 

  10. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT, Anti TNFTACHFI (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107:3133–3140. https://doi.org/10.1161/01.CIR.0000077913.60364.D2

    Article  CAS  PubMed  Google Scholar 

  11. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba A-E, Zernecke A (2018) Single-cell RNA-Seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 122:1661–1674. https://doi.org/10.1161/CIRCRESAHA.117.312509

    Article  CAS  PubMed  Google Scholar 

  12. De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, Xu D, Zimmer S, Lahrmann C, Schildberg FA, Vogelhuber J, Kraut M, Ulas T, Kerksiek A, Krebs W, Bode N, Grebe A, Fitzgerald ML, Hernandez NJ, Williams BRG, Knolle P, Kneilling M, Röcken M, Lütjohann D, Wright SD, Schultze JL, Latz E (2014) High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 15:152–160. https://doi.org/10.1038/ni.2784

    Article  CAS  PubMed  Google Scholar 

  13. Dick SA, Macklin JA, Nejat S, Momen A, Clemente-Casares X, Althagafi MG, Chen J, Kantores C, Hosseinzadeh S, Aronoff L, Wong A, Zaman R, Barbu I, Besla R, Lavine KJ, Razani B, Ginhoux F, Husain M, Cybulsky MI, Robbins CS, Epelman S (2019) Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol 20:29–39. https://doi.org/10.1038/s41590-018-0272-2

    Article  CAS  PubMed  Google Scholar 

  14. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP (2019) Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. https://doi.org/10.7554/eLife.43882

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir E-AD, Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA, Wang Z, Remark R, Li JR, Pina C, Faries C, Awad AJ, Moss N, Bjorkegren JLM, Kim-Schulze S, Gnjatic S, Ma’ayan A, Mocco J, Faries P, Merad M, Giannarelli C (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–1588. https://doi.org/10.1038/s41591-019-0590-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, Linsley PS, Gottardo R (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278–278. https://doi.org/10.1186/s13059-015-0844-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18:901–911. https://doi.org/10.1101/gad.291004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD, Sargent MA, Prasad V, Valiente-Alandi I, Blaxall BC, Molkentin JD (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Investig 128:2127–2143. https://doi.org/10.1172/jci98215

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gladka MM, Molenaar B, de Ruiter H, van der Elst S, Tsui H, Versteeg D, Lacraz GPA, Huibers MMH, van Oudenaarden A, van Rooij E (2018) Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138:166–180. https://doi.org/10.1161/circulationaha.117.030742

    Article  CAS  PubMed  Google Scholar 

  20. Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7:1543–1588. https://doi.org/10.7150/thno.15625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He Z, Way KJ, Arikawa E, Chou E, Opland DM, Clermont A, Isshiki K, Ma RC, Scott JA, Schoen FJ, Feener EP, King GL (2005) Differential regulation of angiotensin II-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium. J Biol Chem 280:15719–15726. https://doi.org/10.1074/jbc.M413493200

    Article  CAS  PubMed  Google Scholar 

  22. Howangyin KY, Zlatanova I, Pinto C, Ngkelo A, Cochain C, Rouanet M, Vilar J, Lemitre M, Stockmann C, Fleischmann BK, Mallat Z, Silvestre JS (2016) Myeloid-epithelial-reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation 133:826–839. https://doi.org/10.1161/circulationaha.115.020857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hulsmans M, Sager HB, Roh JD, Valero-Munoz M, Houstis NE, Iwamoto Y, Sun Y, Wilson RM, Wojtkiewicz G, Tricot B, Osborne MT, Hung J, Vinegoni C, Naxerova K, Sosnovik DE, Zile MR, Bradshaw AD, Liao R, Tawakol A, Weissleder R, Rosenzweig A, Swirski FK, Sam F, Nahrendorf M (2018) Cardiac macrophages promote diastolic dysfunction. J Exp Med 215:423–440. https://doi.org/10.1084/jem.20171274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, Imamura S, Uchiyama T (1996) The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 183:2185–2195. https://doi.org/10.1084/jem.183.5.2185

    Article  CAS  PubMed  Google Scholar 

  25. Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H, Lundgren P, Bleriot C, Liu Z, Deczkowska A, Keren-Shaul H, David E, Zmora N, Eldar SM, Lubezky N, Shibolet O, Hill DA, Lazar MA, Colonna M, Ginhoux F, Shapiro H, Elinav E, Amit I (2019) Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178:686-698.e614. https://doi.org/10.1016/j.cell.2019.05.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of alzheimer’s disease. Cell 169:1276-1290.e1217. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  27. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436. https://doi.org/10.1038/86498

    Article  CAS  PubMed  Google Scholar 

  28. Kumar BV, Ma W, Miron M, Granot T, Guyer RS, Carpenter DJ, Senda T, Sun X, Ho SH, Lerner H, Friedman AL, Shen Y, Farber DL (2017) Human tissue-resident memory t cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep 20:2921–2934. https://doi.org/10.1016/j.celrep.2017.08.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lachmann A, Giorgi FM, Lopez G, Califano A (2016) ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32:2233–2235. https://doi.org/10.1093/bioinformatics/btw216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, Yan W, Ning Q, Zheng L, Chen Y, Wu Y (2017) VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun 8:1322–1322. https://doi.org/10.1038/s41467-017-01327-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li J, Yang KY, Tam RCY, Chan VW, Lan HY, Hori S, Zhou B, Lui KO (2019) Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 9:4324–4341. https://doi.org/10.7150/thno.32734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, D’Amico G, Hodivala-Dilke KM, Shah AM, Mills NL, Simons BD, Gray GA, Henderson NC, Baker AH, Brittan M (2019) Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz305

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, Mahabeleshwar GH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH, Hamik A, Clément K, Jain MK (2011) Krüppel-like factor 4 regulates macrophage polarization. J Clin Investig 121:2736–2749. https://doi.org/10.1172/JCI45444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar O, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA (2020) Cells of the adult human heart. Nature. https://doi.org/10.1038/s41586-020-2797-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu X, Wang Y, Lu H, Li J, Yan X, Xiao M, Hao J, Alekseev A, Khong H, Chen T, Huang R, Wu J, Zhao Q, Wu Q, Xu S, Wang X, Jin W, Yu S, Wang Y, Wei L, Wang A, Zhong B, Ni L, Liu X, Nurieva R, Ye L, Tian Q, Bian X-W, Dong C (2019) Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567:525–529. https://doi.org/10.1038/s41586-019-0979-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, Gettler K, Chuang L-S, Nayar S, Greenstein AJ, Dubinsky M, Walker L, Leader A, Fine JS, Whitehurst CE, Mbow ML, Kugathasan S, Denson LA, Hyams JS, Friedman JR, Desai PT, Ko HM, Laface I, Akturk G, Schadt EE, Salmon H, Gnjatic S, Rahman AH, Merad M, Cho JH, Kenigsberg E (2019) Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy. Cell 178:1493-1508.e1420. https://doi.org/10.1016/j.cell.2019.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM (2002) T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105:570–575. https://doi.org/10.1161/hc0502.103348

    Article  CAS  PubMed  Google Scholar 

  38. Nevers T, Salvador AM, Velazquez F, Ngwenyama N, Carrillo-Salinas FJ, Aronovitz M, Blanton RM, Alcaide P (2017) Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med 214:3311–3329. https://doi.org/10.1084/jem.20161791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oka T, Akazawa H, Naito AT, Komuro I (2014) Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res 114:565–571. https://doi.org/10.1161/circresaha.114.300507

    Article  CAS  PubMed  Google Scholar 

  40. Palethorpe HM, Tomita Y, Smith E, Pei JV, Townsend AR, Price TJ, Young JP, Yool AJ, Hardingham JE (2018) The aquaporin 1 inhibitor Bacopaside II reduces endothelial cell migration and tubulogenesis and induces apoptosis. Int J Mol Sci. https://doi.org/10.3390/ijms19030653

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman JR, Matchett KP, Brice M, Marwick JA, Taylor RS, Efremova M, Vento-Tormo R, Carragher NO, Kendall TJ, Fallowfield JA, Harrison EM, Mole DJ, Wigmore SJ, Newsome PN, Weston CJ, Iredale JP, Tacke F, Pollard JW, Ponting CP, Marioni JC, Teichmann SA, Henderson NC (2019) Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. https://doi.org/10.1038/s41586-019-1631-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez P, Sassi Y, Troncone L, Benard L, Ishikawa K, Gordon RE, Lamas S, Laborda J, Hajjar RJ, Lebeche D (2019) Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. Eur Heart J 40:967–978. https://doi.org/10.1093/eurheartj/ehy188

    Article  CAS  PubMed  Google Scholar 

  43. Russo RC, Garcia CC, Teixeira MM, Amaral FA (2014) The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 10:593–619. https://doi.org/10.1586/1744666X.2014.894886

    Article  CAS  PubMed  Google Scholar 

  44. Sager HB, Hulsmans M, Lavine KJ, Moreira MB, Heidt T, Courties G, Sun Y, Iwamoto Y, Tricot B, Khan OF, Dahlman JE, Borodovsky A, Fitzgerald K, Anderson DG, Weissleder R, Libby P, Swirski FK, Nahrendorf M (2016) Proliferation and recruitment contribute to myocardial macrophage expansion in chronic heart failure. Circ Res 119:853–864. https://doi.org/10.1161/CIRCRESAHA.116.309001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, Huang SP, Walsh AM, Baxi V, Pandya D, Baradet T, Locke D, Wu Q, Reilly TP, Phillips P, Nagineni V, Gianino N, Gu J, Zhao H, Perez-Gracia JL, Sanmamed MF, Melero I (2020) Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med 26:688–692. https://doi.org/10.1038/s41591-020-0856-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schwab SR, Cyster JG (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8:1295–1301. https://doi.org/10.1038/ni1545

    Article  CAS  PubMed  Google Scholar 

  47. Shen L, Jhund PS, Petrie MC, Claggett BL, Barlera S, Cleland JGF, Dargie HJ, Granger CB, Kjekshus J, Kober L, Latini R, Maggioni AP, Packer M, Pitt B, Solomon SD, Swedberg K, Tavazzi L, Wikstrand J, Zannad F, Zile MR, McMurray JJV (2017) Declining risk of sudden death in heart failure. N Engl J Med 377:41–51. https://doi.org/10.1056/NEJMoa1609758

    Article  PubMed  Google Scholar 

  48. Shetelig C, Limalanathan S, Hoffmann P, Seljeflot I, Gran JM, Eritsland J, Andersen G (2018) Association of IL-8 with infarct size and clinical outcomes in patients with STEMI. J Am Coll Cardiol 72:187–198. https://doi.org/10.1016/j.jacc.2018.04.053

    Article  CAS  PubMed  Google Scholar 

  49. Skelly DA, Squiers GT, McLellan MA, Bolisetty MT, Robson P, Rosenthal NA, Pinto AR (2018) Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22:600–610. https://doi.org/10.1016/j.celrep.2017.12.072

    Article  CAS  PubMed  Google Scholar 

  50. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166. https://doi.org/10.1126/science.1230719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tucker NR, Chaffin M, Fleming SJ, Hall AW, Parsons VA, Bedi KC Jr, Akkad AD, Herndon CN, Arduini A, Papangeli I, Roselli C, Aguet F, Choi SH, Ardlie KG, Babadi M, Margulies KB, Stegmann CM, Ellinor PT (2020) Transcriptional and cellular diversity of the human heart. Circulation. https://doi.org/10.1161/circulationaha.119.045401

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polanski K, Goncalves A, Gardner L, Holmqvist S, Henriksson J, Zou A, Sharkey AM, Millar B, Innes B, Wood L, Wilbrey-Clark A, Payne RP, Ivarsson MA, Lisgo S, Filby A, Rowitch DH, Bulmer JN, Wright GJ, Stubbington MJT, Haniffa M, Moffett A, Teichmann SA (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:347–353. https://doi.org/10.1038/s41586-018-0698-6

    Article  CAS  PubMed  Google Scholar 

  53. Wang L, Yu P, Zhou B, Song J, Li Z, Zhang M, Guo G, Wang Y, Chen X, Han L, Hu S (2020) Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol 22:108–119. https://doi.org/10.1038/s41556-019-0446-7

    Article  CAS  PubMed  Google Scholar 

  54. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499. https://doi.org/10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435:98–104. https://doi.org/10.1038/nature03511

    Article  CAS  PubMed  Google Scholar 

  56. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, Konno H, Guo X, Ye Y, Gao S, Wang S, Hu X, Ren X, Shen Z, Ouyang W, Zhang Z (2018) Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564:268–272. https://doi.org/10.1038/s41586-018-0694-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge Dr. Ulrich Hofmann at University Clinic Halle (Germany) and Dr. Maarten Hulsmans at Harvard Medical School for their tremendous contribution to this project. We thank Li Yang, Rui Yang, Fei Wang, Jian Meng and the BIOPIC FACS facility for technical help.

Funding

This work is supported by the R&D Program of Beijing Municipal Education commission (KJZD20191002301), CAMS Initiative for Innovative Medicine (2017-I2M-003, 2016-I2M-015), the National Natural Science Foundation of China (31601063), SLS-Qidong Innovation Fund and Beijing Advanced Innovation Centre for Genomics at Peking University.

Author information

Authors and Affiliations

Authors

Contributions

MR, GG, XH, SH, and JS designed the study, XH, SH, and JS supervised the study. MR, GG, LW, and XH performed the experiment. XW, MR, GG, and XH analyzed the data. GG and SC collected clinical samples and clinical data. MR, PY, XW, GG, and XH wrote the manuscript. ZZ, PY, XH, SH, and JS made revisions. XH, SH, and JS provided funding. All authors read the manuscript and approved it before submission.

Corresponding authors

Correspondence to Xueda Hu, Shengshou Hu or Jiangping Song.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M., Wang, X., Guo, G. et al. Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res Cardiol 116, 55 (2021). https://doi.org/10.1007/s00395-021-00897-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-021-00897-1

Keywords

Navigation