Skip to main content
Log in

Molecular regulation of seed development and strategies for engineering seed size in crop plants

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Seed, a unit of plant reproduction, is an important source of food, feed, and feedstock. Seed size is a key component of a seed yield trait. Improving seed size has been one of the primary goals of plant breeding since the domestication of crop plants. In the last one and half decade, molecular studies on seed development have gained a great importance in plant research and as a result, a number of molecular regulators of seed size have been identified in the model plant Arabidopsis and some of the crop plants. Seed development is a complex process involving a coordinated growth of maternal and zygotic tissues, which is regulated by the integrated action of transcriptional, epigenetic, hormonal, peptide and sugar signaling regulators. In this review, the role of different transcriptional, epigenetic, hormonal, peptide and sugar signaling regulators in seed development pathways are discussed in detail followed by a brief description of the application of the knowledge gained over the years on molecular regulation of seed development for engineering seed size in crop plants using novel transgenic and recently evolved new breeding strategies such as genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamski NM, Anastasiou E, Eriksson S, O’Neill CM, Lenhard M (2009) Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci USA 106:20115–20120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal P, Kapoor S, Tyagi AK (2011) Transcription factors regulating the progression of monocot and dicot seed development. Bioessays 33:189–202

    Article  CAS  PubMed  Google Scholar 

  • Agusti J, Herold S, Schwarz M et al (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856

    Article  CAS  PubMed  Google Scholar 

  • Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M (2014) A novel AP2-type transcription factor SMALL ORGAN SIZE1 controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol 55:897–912

    Article  CAS  PubMed  Google Scholar 

  • Bai XF, Luo LJ, Yan WH, Kovi MR, Zhan W, Xing YZ (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrangou R, Gersbach CA (2017) Expanding the CRISPR toolbox: targeting RNA with Cas13b. Mol Cell 65:582–584

    Article  CAS  PubMed  Google Scholar 

  • Bate NJ, Niu X, Wang Y, Reimann KS, Helentjaris TG (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 134:246–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer MJ, Fischer RL (2011) Genome demethylation and imprinting in the endosperm. Curr Opin Plant Biol 14:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauzamy L, Fourquin C, Dubrulle N, Boursiac Y, Boudaoud A, Ingram G (2016) Endosperm turgor pressure decreases during early Arabidopsis seed development. Dev 143:3295–3299

    Article  CAS  Google Scholar 

  • Becker MG, Hsu SW, Harada JJ, Belmonte MF (2014) Genomic dissection of the seed. Front Plant Sci 5:64–77

    Article  Google Scholar 

  • Belmonte MF, Kirkbride RC, Stone SL et al (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA 110:E435–E444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger F, Chaudhury A (2009) Parental memories shape seeds. Trends Plant Sci 14:550–556

    Article  CAS  PubMed  Google Scholar 

  • Bernardi J, Lanubile A, Li QB, Kumar D, Kladnik A, Cook SD et al (2012) Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol 160:1318–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B et al (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163

    Article  Google Scholar 

  • Blanvillain R, Young B, Cai YM, Hecht V, Varoquaux F, Delorme V et al (2011) The Arabidopsis peptide kiss of death is an inducer of programmed cell death. EMBO J 30:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisjuk L, Walenta S, Weber H, Mueller-Klieser W, Wobus U (1998) High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. Plant J 15:583–591

    Article  CAS  Google Scholar 

  • Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M et al (2014) Association mapping of six yield-related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127:85–96

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H et al (2016) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2:1–7

    Google Scholar 

  • Chen JG, Shimomura S, Sitbon F, Sandberg G, Jones AM (2001) The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J 28:607–617

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang L, Liu S, Li Z, Huang R, Li Y et al (2016) The genetic basis of natural variation in kernel size and related traits using a four-way cross population in maize. PLoS ONE 11:e0153428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng JK, Alper HS (2016) Transcriptomics-guided design of synthetic promoters for a mammalian system. ACS Synth Biol 5:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Cao L, Wang S, Li Y, Shi X, Liu H et al (2013) Downregulation of multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell proliferation and organ and seed sizes in Arabidopsis. Plant J 75:642–655

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZJ, Zhao XY, Shao XX, Wang F, Zhou C, Liu YG et al (2014) Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell 26:1053–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier E, Loubert-Hudon A, Matton DP (2013) ScRALF3 a secreted RALF-like peptide involved in cell–cell communication between the sporophyte and the female gametophyte in a solanaceous species. Plant J 73:1019–1033

    Article  CAS  PubMed  Google Scholar 

  • Collins ES, Balchand SK, Faraci JL, Wadsworth P, Lee WL (2012) Cell cycle–regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Mol Biol Cell 23:3380–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa LM, Yuan J, Rouster J, Paul W, Dickinson H, Gutierrez-Marcos JF (2012) Maternal control of nutrient allocation in plant seeds by genomic imprinting. Curr Biol 22:160–165

    Article  CAS  PubMed  Google Scholar 

  • Costa LM, Marshall E, Tesfaye M, Silverstein KA, Mori M, Umetsu Y et al (2014) Central cell–derived peptides regulate early embryo patterning in flowering plants. Science 344: 168–172

    Article  CAS  PubMed  Google Scholar 

  • Dante RA, Larkins BA, Sabelli PA (2014) Cell cycle control and seed development. Front Plant Sci 5:493

    Google Scholar 

  • Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division cytokinin signaling and gene expression regulation. Plant Physiol 148:1964–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Veylder L, Beeckman T, Inzé D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol 8:655–665

    Article  PubMed  CAS  Google Scholar 

  • Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A et al (2011) Analysis of gene expression patterns during seed coat development in Arabidopsis. Mol Plant 4:1074–1091

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Dong H, Mu J, Ren B, Zheng B, Ji Z et al (2010) Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22:1232–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez F, Cejudo FJ (2014) Programmed cell death (PCD): an essential process of cereal seed development and germination. Front Plant Sci 5:366

    PubMed  PubMed Central  Google Scholar 

  • Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y et al (2014) The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. Plant Cell 26:665–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y, Zhang W, Li B, Wang Y, Li K, Han C et al (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695

    Article  CAS  PubMed  Google Scholar 

  • Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G et al (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Wang Z, Cui R, Li J, Li Y (2012) Maternal control of seed size by EOD3/CYP78A6 in A. thaliana. Plant J 70:929–939

    Article  CAS  PubMed  Google Scholar 

  • Fang N, Xu R, Huang L, Zhang B, Duan P, Li N, Luo Y, Li Y (2016) SMALL GRAIN 11 controls grain size grain number and grain yield in rice. Rice 9:64–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Fatihi A, Zbierzak AM, Dörmann P (2013) Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds. Plant Physiol 163:973–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C (2016) Auxin production in the endosperm drives seed coat development in Arabidopsis. Elife 5:e20542

    PubMed  PubMed Central  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  • Fiume E, Fletcher JC (2012) Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. Plant Cell 24:1000–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forestan C, Farinati S, Varotto S (2012) The maize PIN gene family of auxin transporters. Front Plant Sci 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhang X, Lan H, Huang J, Wang J, Zhang H (2015) The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biol 15:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F (2003) Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol 131:1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia D, Gerald JNF, Berger F (2005) Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R (2016) Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA 113:12414–12419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring M, Satyaki PR (2017) Endosperm and imprinting inextricably linked. Plant Physiol 173:143–154

    Article  CAS  PubMed  Google Scholar 

  • Geng J, Li L, Lv Q, Zhao Y, Liu Y, Zhang L, Li X (2017) TaGW2–6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta 1–11

  • Gnan S, Priest A, Kover PX (2014) The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines. Genetics 198:1751–1758

    Article  PubMed  PubMed Central  Google Scholar 

  • Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64:1–13

    PubMed  Google Scholar 

  • Gontarek BC, Neelakandan AK, Wu H, Becraft PW (2016) NKD transcription factors are central regulators of maize endosperm development. Plant Cell tpc-00609

  • Griffiths S, Wingen L, Pietragalla J, Garcia G, Hasan A, Miralles D et al (2015) Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm. PLoS ONE 10:e0118847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groot SP, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellin in seed and fruit development of tomato: Studies with a gibberellin-deficient mutant. Physiol Plant 71:184–190

    Article  CAS  Google Scholar 

  • Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA a polycomb group gene in Arabidopsis. Science 280:446–450

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He XJ, Hsu YF, Zhu S, Liu HL, Pontes O, Zhu J et al (2009) A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development. Genes Dev 23:2717–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Sun Y, Yang Q, Zhang X, Huang Q, Zhao P et al (2017) A novel imprinted gene NUWA controls mitochondrial function in early seed development in Arabidopsis. PLoS Genet 13:e1006553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y et al (2005) The rice brassinosteroid-deficient dwarf2 mutant defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1 is rescued by the endogenously accumulated alternative bioactive brassinosteroid dolichosterone. Plant Cell 17:2243–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ et al (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA 108:1755–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YF, Li YP, Zhang J, Liu H, Tian M, Huang Y (2012) Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize (Zea mays L.) endosperm. J Exp Bot 63:5979–5989

    Article  CAS  PubMed  Google Scholar 

  • Hughes R, Spielman M, Schruff MC, Larson TR, Graham IA, Scott RJ (2008) Yield assessment of integument-led seed growth following targeted repair of auxin response factor 2. Plant Biotechnol J 6:758–769

    Article  CAS  PubMed  Google Scholar 

  • Ingouff M, Jullien PE, Berger F (2006) The female gametophyte and the endosperm control cell proliferation and differentiation of the seed coat in Arabidopsis. Plant Cell 18:3491–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnke S, Scholten S (2009) Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 19:1677–1681

    Article  CAS  PubMed  Google Scholar 

  • Jameson PE, Song J (2016) Cytokinin: a key driver of seed yield. J Exp Bot 67:593–606

    Article  CAS  PubMed  Google Scholar 

  • Jang S, An G, Li HY (2016) Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol 01653

  • Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162:1965–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Kohler C (2012) Evolution, function, and regulation of genomic imprinting in plant seed development. J Exp Bot 63:4713–4722

    Article  CAS  PubMed  Google Scholar 

  • Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102:3117–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2 a trichome and seed coat development gene of Arabidopsis encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston AJ, Matveeva E, Kirioukhova O, Grossniklaus U, Gruissem W (2008) A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Curr Biol 18:1680–1686

    Article  CAS  PubMed  Google Scholar 

  • Johnston AJ, Kirioukhova O, Barrell PJ, Rutten T, Moore JM, Baskar R et al (2010) Dosage-sensitive function of retinoblastoma related and convergent epigenetic control are required during the Arabidopsis life cycle. PLoS Genet 6:e1000988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jullien PE, Katz A, Oliva M, Ohad N, Berger F (2006) Polycomb group complexes self-regulate imprinting of the polycomb group gene MEDEA in Arabidopsis. Curr Biol 16:486–492

    Article  CAS  PubMed  Google Scholar 

  • Jurkowski TP, Ravichandran M, Stepper P (2015) Synthetic epigenetics—towards intelligent control of epigenetic states and cell identity. Clin Epigenetics 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang X, Ni M (2006) Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell 18:921–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN (2008) The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X, Li W, Zhou Y, Ni M (2013) A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genet 9:e1003347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis ABA transport and hormone interactions. Plant Cell Physiol 51:1988–2001

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Park JH, Kim AY, Suh MC (2016) Functional analysis of diacylglycerol acyltransferase1 genes from Camelina sativa and effects of CsDGAT1B overexpression on seed mass and storage oil content in C. sativa.. Plant Biotechnol Rep 10:141–153

    Article  Google Scholar 

  • Kohlen W, Charnikhova T, Lammers M et al (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytol 196:535–547

    Article  CAS  PubMed  Google Scholar 

  • Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17:1540–1553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kono A, Umeda-Hara C, Adachi S, Nagata N, Konomi M, Nakagawa T et al (2007) The Arabidopsis D-type cyclin CYCD4 controls cell division in the stomatal lineage of the hypocotyl epidermis. Plant Cell 19:1265–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kradolfer D, Hennig L, Köhler C (2013) Increased maternal genome dosage bypasses the requirement of the FIS polycomb repressive complex 2 in Arabidopsis seed development. PLoS Genet 9:e1003163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwabara A, Gruissem W (2014) Arabidopsis Retinoblastoma-related and Polycomb group proteins: cooperation during plant cell differentiation and development. J Exp Bot 65:2667–2676

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y et al (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS ONE 7:e42411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leljak-Levanić D, Mihaljević S, Bauer N (2015) Somatic and zygotic embryos share common developmental features at the onset of plant embryogenesis. Acta Physiol Plant 37:127

    Article  CAS  Google Scholar 

  • Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22:1331–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010a) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Li L, Yang X, Warburton ML, Bai G, Dai J, Li J, Yan J (2010b) Relationship evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:1–15

    Article  CAS  Google Scholar 

  • Li J, Nie X, Tan JLH, Berger F (2013) Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc Natl Acad Sci USA 110:15479–15484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YY, Tao HJ, Zhao XQ, Jie XU, Li GM, Hu SK et al (2014) Molecular improvement of grain weight and yield in rice by using GW6 gene. Rice Sci 21:127–132

    Article  Google Scholar 

  • Li D, Liu Z, Gao L, Wang L, Gao M, Jiao Z et al (2016) Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS ONE 11:e0153168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Q, Li L, Liu Y, Lv Q, Zhang H, Zhu J, Li XJ (2017) Influence of TaGW2–6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Sci 263:226–235

    Article  CAS  PubMed  Google Scholar 

  • Liller CB, Walla A, Boer MP, Hedley P, Macaulay M, Effgen S et al (2017) Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theor Appl Genet 130:269–281

    Article  PubMed  Google Scholar 

  • Liu W, Stewart CN (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Lv Y, Zhang M, Liu Y, Kong L, Zou M, Lu G, Cao J, Yu X (2013) Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genom 14:594

    Article  CAS  Google Scholar 

  • Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R et al (2015a) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA 112:E5123–E5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B et al (2015b) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA 112:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Deng S, Wang H, Ye J, Wu HW, Sun HX, Chua NH (2016) CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol 171:424–436

  • Liu B, Hua C, Song G, Wu M, Cui R, Zhang A et al (2017) The SPATULA transcription factor regulates seed oil content by controlling seed specific genes in Arabidopsis thaliana. Plant Growth Regul 82:111–121

    Article  CAS  Google Scholar 

  • Locascio A, Roig-Villanova I, Bernardi J, Varotto S (2014) Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Front Plant Sci 5:412

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Xiong Q, Cheng T, Li QT, Liu XL, Bi YD et al (2017) A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant 10:670–684

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3) a WRKY family gene and HAIKU2 (IKU2) a leucine-rich repeat (LRR) KINASE gene are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Taylor JM, Spriggs A, Zhang H, Wu X, Russell S et al (2011) A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet 7:e1002125

    Article  CAS  Google Scholar 

  • Ma QH, Wang XM, Wang ZM (2008) Expression of isopentenyl transferase gene controlled by seed-specific lectin promoter in transgenic tobacco influences seed development. J Plant Growth Regul 27:68–76

    Article  CAS  Google Scholar 

  • Ma M, Wang Q, Li Z, Cheng H, Li Z, Liu X et al (2015) Expression of TaCYP78A3 a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.) affects seed size. Plant J 83:312–325

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng LS, Wang ZB, Yao SQ, Liu A (2015) The ARF2–ANT–COR15A gene cascade regulates ABA-signaling-mediated resistance of large seeds to drought in Arabidopsis. J Cell Sci 128:3922–3932

    Article  CAS  PubMed  Google Scholar 

  • Meng LS, Wang YB, Loake GJ, Jiang JH (2016) Seed embryo development is regulated via an AN3-MINI3 gene cascade. Front Plant Sci 7:1645

    PubMed  PubMed Central  Google Scholar 

  • Meng LS, Xu MK, Li D, Zhou MM, Jiang J (2017) Soluble sugar accumulation can influence seed size via AN3–YDA gene cascade. J Agric Food Chem 65:4121–4132

    Article  CAS  PubMed  Google Scholar 

  • Mönke G, Seifert M, Keilwagen J, Mohr M, Grosse I, Hähnel U et al (2012) Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon. Nucleic Acids Res 40:8240–8254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M et al (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15:204–210

    Article  CAS  PubMed  Google Scholar 

  • Mosher RA, Melnyk CW, Kelly KA, Dunn RM, Studholme DJ, Baulcombe DC (2009) Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460:283–286

    Article  CAS  PubMed  Google Scholar 

  • Motyka V, Vaňková R, Čapková V, Petrášek J, Kamínek M, Schmülling T (2003) Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol Plant 117:11–21

    Article  CAS  Google Scholar 

  • Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H et al (2012) Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol 158:1208–1219

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32:959–970

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nodine MD, Bartel DP (2012) Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482:94–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguero M, Le Signor C, Vernoud V, Bandyopadhyay K, Sanchez M, Fu C et al (2015) DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. Plant J 81:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo endosperm and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Okushima Y, Mitina I, Quach HL, Theologis A (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46

    Article  CAS  PubMed  Google Scholar 

  • Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. BBA-Gene Struct Expr 1769:375–382

    Article  CAS  Google Scholar 

  • Pires ND, Bemer M, Müller LM, Baroux C, Spillane C, Grossniklaus U (2016) Quantitative genetics identifies cryptic genetic variation involved in the paternal regulation of seed development. PLoS Genet 12:e1005806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasmussen A, Mason M, De Cuyper C et al (2012) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158:1976–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rijavec T, Jain M, Dermastia M, Chourey PS (2011) Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Ann Bot 107:1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Roszak P, Köhler C (2011) Polycomb group proteins are required to couple seed coat initiation to fertilization. Proc Natl Acad Sci USA 108:20826–20831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4 one of the 14-member Arabidopsis GASA family of small polypeptides regulates flowering and seed development. Plant Cell Physiol 48:471–483

    Article  CAS  PubMed  Google Scholar 

  • Saint Pierre C, Burgueño J, Crossa J, Dávila GF, López PF, Moya ES et al (2016) Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci Rep 6

  • Sasaki K, Kim MH, Kanno Y, Seo M, Kamiya Y, Imai R (2015) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 influences ABA accumulation in seed and negatively regulates germination. Biochem Biophys Res Commun 456:380–384

    Article  CAS  PubMed  Google Scholar 

  • Savadi S, Naresh V, Kumar V, Bhat SR (2015a) Seed-specific overexpression of Arabidopsis DGAT1 in Indian mustard (Brassica juncea) increases seed oil content and seed weight. Botany 94:177–184

    Article  CAS  Google Scholar 

  • Savadi S, Naresh V, Kumar V, Dargan S, Gupta NC, Chamola R, Bhat SR (2015b) Effect of overexpression of Arabidopsis thaliana SHB1 and KLUH genes on seed weight and yield contributing traits in Indian mustard (Brassica juncea L.(Czern.). Indian J Genet Plant Breed 75:349–356

    Article  CAS  Google Scholar 

  • Savadi S, Lambani N, Kashyap PL, Bisht DS (2017) Genetic engineering approaches to enhance oil content in oilseed crops. Plant Growth Regul 83:207–222

    Article  CAS  Google Scholar 

  • Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling cell division and the size of seeds and other organs. Dev 133:251–261

    Article  CAS  Google Scholar 

  • Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y et al (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366

    Article  CAS  PubMed  Google Scholar 

  • Shen WH, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J et al (2002) Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell 13:1916–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Wang C, Fu Y, Wang J, Liu Q, Zhang X et al (2016) QTL editing confers opposing yield performance in different rice varieties. J Integ Plant Biol. https://doi.org/10.1111/jipb.12501

    Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genet 40:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45

    Article  CAS  PubMed  Google Scholar 

  • Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R et al (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a–Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425:479–491

    Article  CAS  PubMed  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Song J, Jiang L, Jameson PE (2012) Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol 12:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Jiang L, Jameson PE (2015) Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase and amino acid permease gene family members in leaf, flower, silique and seed development. J Exp Bot 66:5067–5082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sornay E, Forzani C, Forero-Vargas M, Dewitte W, Murray JA (2015) Activation of CYCD7:1 in the central cell and early endosperm overcomes cell-cycle arrest in the Arabidopsis female gametophyte and promotes early endosperm and embryo development. Plant J 84:41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens GL (1991) U.S. Department of agriculture brassins project: 1970–1980. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids. Chemistry bioactivity and application. ACS Symposium Series 474. American Chemical Society, Washington, pp 2–17

    Chapter  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Shantharaj D, Kang X, Ni M (2010) Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol 13:611–620

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Ma D, Yu H, Zhou F, Li Y, Luo L et al (2013) Identification of quantitative trait loci for grain size and the contributions of major grain-size QTLs to grain weight in rice. Mol Breed 31:451–461

    Article  CAS  Google Scholar 

  • Sun R, Ye R, Gao L, Zhang L, Wang R et al (2017a) Ectopic expression of CoWRI1 from coconut (Cocos nucifera L.) endosperm changes the seeds oil content in transgenic Arabidopsis and rice (Oryza sativa L.). Front Plant Sci 8:63

    PubMed  PubMed Central  Google Scholar 

  • Sun Y, Wang C, Wang N, Jiang X, Mao H, Zhu C et al (2017b) Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas. Sci Rep 7:40844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaresan V (2005) Control of seed size in plants. Proc Natl Acad Sci 102:17887–17888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain SM, Reid JB, Kamiya Y (1997) Gibberellins are required for embryo growth and seed development in pea. Plant J 12:1329–1338

    Article  CAS  Google Scholar 

  • Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K et al (2005) shk1-D a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene has altered brassinosteroid levels. Plant J 42:13–22

    Article  CAS  PubMed  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3 a gene conferring grain length in rice. Genet 182:1323–1334

    Article  CAS  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M et al (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant dwarf11 with reduced seed length. Plant Cell 17:776–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesfaye M, Silverstein KA, Nallu S, Wang L, Botanga CJ, Gomez SK et al (2013) Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PLoS ONE 8:e58992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakore PI, Black JB, Hilton IB, Gersbach CA (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Zhang M, Hu X, Wang L, Dai J, Xu Y, Chen F (2016) Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco. Electron J Biotechnol 19:15–22

    Article  CAS  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    Article  CAS  PubMed  Google Scholar 

  • Trapalis M, Li SF, Parish RW (2017) The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds. Plant Sci. https://doi.org/10.1016/j.plantsci.2017.04.003

    PubMed  Google Scholar 

  • Völz R, Heydlauff J, Ripper D, Von Lyncker L, GroB-Hardt R (2013) Ethylene signalling is required for synergid degeneration and the establishment of a pollen tube block. Dev Cell 25:310–316

    Article  PubMed  CAS  Google Scholar 

  • Walton LJ, Kurepin LV, Yeung EC, Shah S, Emery RN, Reid DM, Pharis RP (2012) Ethylene involvement in silique and seed development of canola Brassica napus L. Plant Physiol Biochem 58:142–150

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ruan YL (2012) New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton. Plant Physiol 160:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, Berger F et al (2010) The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J 63:670–679

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Tang MQ, Chen S, Zheng XF, Mo HX, Li SJ et al (2017) Down-regulation of BnDA1 whose gene locus is associated with the seeds weight improves the seeds weight and organ size in Brassica napus. Plant Biotechnol J. https://doi.org/10.1111/pbi.12696

    Google Scholar 

  • Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, Springer NM (2013) Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci USA 110:19639–19644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams K, Sorrells ME (2014) Three-dimensional seed size and shape QTL in hexaploid wheat (L.) populations. Crop Sci 54:98–110

    Article  Google Scholar 

  • Wojcikowska B, Jaskola K, Gasiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238:425–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Fu Y, Zhao S, Gu P, Zhu Z, Sun C, Tan L (2016) CLUSTERED PRIMARY BRANCH 1 a new allele of DWARF11 controls panicle architecture and seed size in rice. Plant Biotechnol J 14:377–386

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Dor E, Hershenhorn J (2017) Strigolactones affect tomato hormone profile and somatic embryogenesis. Planta 245:583–594

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan MW et al (2013) The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25:3347–3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao W, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol 142:1160–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao YG, Sun QB, Kang XJ, Chen CB, Ni M (2016) SHORT HYPOCOTYL UNDER BLUE1 or HAIKU2 mixepression alters canola and Arabidopsis seed development. New Phytol 209:636–649

    Article  CAS  PubMed  Google Scholar 

  • Xing MQ, Zhang YJ, Zhou SR, Hu WY, Wu XT, Ye YJ, Wu XX, Xiao YP, Li X, Xue HW (2015) Global analysis reveals the crucial roles of DNA methylation during rice seed development. Plant Physiol 168:1417–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Feng J, Zhang L, Zhang J, Mispan MS, Cao Z et al (2015) Map-based cloning of seed dormancy1–2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiol 169:2152–2165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Gallie DR, DeMason DA (1997) Ethylene mediated programmed cell death during maize endosperm development of wild type and shrunken2 genotypes. Plant Physiol 115:737–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K et al (2012) FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA 109:14693–14698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Tian W, Luan S (2014) From receptor-like kinases to calcium spikes: what are the missing links? Mol Plant 7:1501–1504

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Fan S, Huang J, Zhan S, Wang S, Gao P et al (2017) 08SG2/OsBAK1 regulates grain size and number and functions differently in Indica and Japonica backgrounds in rice. Rice 10:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Du L, Xu R, Cui R, Hao J, Sun C, Li Y (2015) Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in A. thaliana. Plant Cell 27:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Dai A, Wei H, Yang S, Wang B, Jiang N, Feng X (2016) Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol 90:33–47

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li WX et al (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455:1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M (2009) SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell 21:106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Liang W, Cui X, Chen M, Yin C, Luo Z et al (2015) Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther a MYB domain protein. Plant J 82:570–558

    Article  CAS  PubMed  Google Scholar 

  • Zondlo SC, Irish VF (1999) CYP78A5 encodes a cytochrome P450 that marks the shoot apical meristem boundary in Arabidopsis. Plant J 19:259–268

    Article  CAS  PubMed  Google Scholar 

  • Zuber H, Noguero M, Signor CL, Thompson R, Gallardo K (2012). In Agrawal GK, Rakwal R (eds) Seed development: OMICS technologies toward improvement of seed quality and crop yield. Berlin: Springer

    Google Scholar 

Download references

Acknowledgements

The author acknowledges Dr. S. R. Bhat, Emeritus Scientist, ICAR-NRCPB, New Delhi, for his guidance and useful discussion on the topic during Ph.D. research work, and Indian Council of Agricultural Research for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddanna Savadi.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savadi, S. Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regul 84, 401–422 (2018). https://doi.org/10.1007/s10725-017-0355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0355-3

Keywords

Navigation