Skip to main content
Log in

The K-Segments of the Wheat Dehydrin DHN-5 are Essential for the Protection of Lactate Dehydrogenase and β-Glucosidase Activities In Vitro

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The wheat dehydrin DHN-5 has been previously shown to exhibit heat protecting effect on enzymatic activities. In order to understand the molecular mechanism by which DHN-5 exerts its protective function, we performed an approach to dissect the functional domains of DHN-5 responsible for this feature. In two distinct enzymatic assays, we found that the truncated forms of DHN-5 containing only one K- or two K-segments are able to protect albeit to less extent than the wild type protein, lactate dehydrogenase and β-glucosidase against damage induced by various stresses in vitro. However, the YS- and Φ-segments alone have no protective effects on these enzymes. Therefore, our study provides the evidence that the protective function of DHN-5 seems to be directly linked to its K-segments which through their amphipatic α-helical structure, may act to prevent protein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wise, M. J. (2003). LEAping to conclusions: A computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics, 4, 52.

    Article  Google Scholar 

  2. Close, T. J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97, 795–803.

    Article  CAS  Google Scholar 

  3. Close, T. J. (1997). Dehydrins: A commonality in the presence of plants to dehydration and low temperature. Physiologia Plantarum, 100, 291–296.

    Article  CAS  Google Scholar 

  4. Tompa, P., Szász, C., & Buday, L. (2005). Structural disorder throws new light on moonlighting. Trends in Biochemical Sciences, 30, 484–489.

    Article  CAS  Google Scholar 

  5. Hanin, M., Brini, F., Ebel, Ch., Toda, Y., Takeda, Sh., & Masmoudi, K. (2011). Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signaling & Behavior, 6, 1–7.

    Article  Google Scholar 

  6. Kazuoka, T., & Oeda, K. (1994). Purification and characterization of COR85-oligomeric complex from cold acclimated spinach. Plant and Cell Physiology, 35, 601–611.

    CAS  Google Scholar 

  7. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberté, S., & Sarhan, F. (1995). Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. The Plant Journal, 8, 583–593.

    Article  CAS  Google Scholar 

  8. Wisniewski, M., Webb, R., Balsamo, R., Close, T. J., Yu, X. M., & Griffith, M. (1999). Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiologia Plantarum, 105, 600–608.

    Article  CAS  Google Scholar 

  9. Brini, F., Saibi, W., Amara, I., Gargouri, A., Masmoudi, K., & Hanin, M. (2010). The wheat dehydrin DHN-5 exerts a heat-protective effect on β-glucosidase and glucose oxidase activities. Bioscience, Biotechnology, and Biochemistry, 74, 1050–1054.

    Article  CAS  Google Scholar 

  10. Hara, M., Terashima, S., & Kuboi, T. (2001). Characterization and cryoprotective activity of cold responsive dehydrin from Citrus unshiu. Journal of Plant Physiology, 158, 1333–1339.

    Article  CAS  Google Scholar 

  11. Ellis, R. J. (2004). From chloroplasts to chaperones: How one thing led to another. Photosynthesis Research, 80, 333–343.

    Article  CAS  Google Scholar 

  12. Tunnacliffe, A., & Wise, M. J. (2007). The continuing conundrum of the LEA proteins. Naturwissenschaften, 94, 791–812.

    Article  CAS  Google Scholar 

  13. Saibi, W., & Gargouri, A. (2011). Purification and biochemical characterization of an atypical β-glucosidase from Stachybotrys microspora. Journal of Molecular Catalysis B-Enzymatic, 72, 107–115.

    Article  CAS  Google Scholar 

  14. Tamya, T., Okahashi, N., Sakuma, R., Aoyama, T., Akahane, T., & Matsumoto, J. J. (1985). Freeze denaturation of enzymes and its prevention with additives. Cryobiology, 22, 446–456.

    Article  Google Scholar 

  15. Carpenter, J. F., & Crowe, J. H. (1988). The mechanism of cryoprotection of proteins by solute. Cryobiology, 25, 244–255.

    Article  CAS  Google Scholar 

  16. Reyes, J. L., Rodrigo, M. J., Colmenero-Flores, J. M., Gil, J. V., Garay-Arroyo, A., Campos, F., et al. (2005). Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant, Cell and Environment, 28, 709–718.

    Article  CAS  Google Scholar 

  17. Ingram, J., & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377–403.

    Article  CAS  Google Scholar 

  18. Segrest, J. P., De Jones, M. K., Loof, H., Brouillette, C. G., Venkatachalapathi, Y. V., & Anantharamaiah, G. M. (1992). The amphipathic helix in the exchangeable apolipoproteins: A review of secondary structure and function. Journal of Lipid Research, 33, 141–166.

    CAS  Google Scholar 

  19. Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27, 527–533.

    Article  CAS  Google Scholar 

  20. Kriwacki, R. W., Hengst, L., Tennant, L., Reed, S. I., & Wright, P. E. (1996). Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proceedings of the National Academy of Sciences USA, 93, 11504–11509.

    Article  CAS  Google Scholar 

  21. Hughes, S., & Graether, S. P. (2011). Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Science, 20, 42–50.

    Article  CAS  Google Scholar 

  22. Zheng, Y. B., Meng, F. G., Chen, B. Y., & Wang, X. C. (2002). Inactivation and conformational changes of lactate dehydrogenase from porcine heart in sodium dodecyl sulphate solutions. International Journal of Biological Macromolecules, 31, 97–102.

    Article  CAS  Google Scholar 

  23. Goyal, K., Walton, L. J., & Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochemical Journal, 388, 151–157.

    Article  CAS  Google Scholar 

  24. Bai, J. H., Wang, H. J., & Zhou, H. M. (1998). Alkaline-induced unfolding and salt-induced folding of pig heart lactate dehydrogenase under high pH conditions. International Journal of Biological Macromolecules, 23, 127–133.

    Article  CAS  Google Scholar 

  25. Gabellieri, E., & Strambini, G. B. (2006). ANS fluorescence detects widespread perturbations of protein tertiary structure in ice. Biophysical Journal, 90, 3239–3245.

    Article  CAS  Google Scholar 

  26. Reyes, J. L., Campos, F., Wei, H., Arora, R., Yang, Y., Karlson, D. T., et al. (2008). Functional dissection of hydrophilins during in vitro freeze protection. Plant, Cell and Environment, 31, 1781–1790.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Hanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drira, M., Saibi, W., Brini, F. et al. The K-Segments of the Wheat Dehydrin DHN-5 are Essential for the Protection of Lactate Dehydrogenase and β-Glucosidase Activities In Vitro. Mol Biotechnol 54, 643–650 (2013). https://doi.org/10.1007/s12033-012-9606-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9606-8

Keywords

Navigation