Skip to main content
Log in

Nitric oxide can induce tolerance to oxidative stress of peanut seedlings under cadmium toxicity

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To study the role of sodium nitroprusside (SNP, a donor of NO) in alleviating cadmium (Cd) toxicity in peanut (Arachis hypogaea L.), peanut seedlings exposed to 50, 100, or 200 µM Cd as CdCl2 were treated with 250 µM SNP. Cd exposure depressed plant growth, inhibited the photosynthesis, and resulted in oxidative stress. In roots, Cd was mostly trapped in the cell wall under low Cd stress, but most Cd was accumulated in the soluble fraction under high Cd concentrations. In leaves, a majority of Cd was accumulated in the cell wall regardless of Cd treatment level. Addition of SNP at 250 µM significantly alleviated Cd toxicity in peanut seedlings, including improved photosynthesis, up-regulated antioxidant system, and reduced Cd translocation from roots to shoots as evidenced by decreased Cd accumulation in stems and leaves. SNP application also changed the subcellular distribution of Cd in leaf and root tissues, by increasing Cd retention in root and leaf cell wall while reducing Cd accumulation in the soluble fractions and cell organelles. These results indicate that SNP has great application potential for improving the growth of plants under heavy metal stress such as Cd toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23579–23588

    Article  CAS  PubMed  Google Scholar 

  • Bai XY, Dong YJ, Wang QH, Xu LL, Kong J, Liu S (2015a) Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. Biol Plant 59(1):163–170

    Article  CAS  Google Scholar 

  • Bai XY, Dong YJ, Xu LL, Kong J, Liu S (2015b) Effects of application of salicylic acid alleviates cadmium toxicity in perennial ryegrass. Plant Growth Regul 75:695–706

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder CH (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  Google Scholar 

  • Bates LS, Waldern SP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Chen F, Wang F, Sun HY, Cai Y, Mao WH, Zhang GP, Vincze E, Wu FB (2010) Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). J Plant Growth Regul 29:394–408

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Coppens P, Novozhilova I, Kovalevsky A (2002) Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem Rev 102:861–883

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, GriYths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Sanità TL, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Dong YJ, Xu LL, WangQH Fan ZY, Kong J, Bai XY (2014) Effects of exogenous nitric oxide on photosynthesis, antioxidative ability, and mineral element contents of perennial ryegrass under copper stress. J Plant Interact 9(1):402–411

    Article  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Errabii T, Gandonou CB, Essalmani H, Abrini J, Idaomar M, Senhaji NS (2007) Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102

    Article  CAS  Google Scholar 

  • Graziano M, Lamattina L (2005) Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci 10:4–8

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Circ Calif Agric Exp Stn 347:29–32

    Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80

    Article  CAS  Google Scholar 

  • Kadioglu A, Saruhan N, Saglam A, Terzi R, Acet T (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    Article  CAS  Google Scholar 

  • Knudson LL, Tibbitts TW, Edwards GE (1977) Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol 60:606–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopyra M, Gwóz´dz´ EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sun flow leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Leita L, De Nobili M, Mondini C, Baca-García MT (1993) Response of leguminosae to cadmium exposure. J Plant Nutr 16:2001–2012

    Article  CAS  Google Scholar 

  • Lozano-Rodriguez E, Hernàndez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    Article  CAS  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    Article  CAS  PubMed  Google Scholar 

  • Mihailovic N, Drazic G (2011) Incomplete alleviation of nickel toxicity in bean by nitric oxide supplementation. Plant Soil Environ 57:396–401

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Nickel RS, Cunningham BA (1969) Improved peroxidase assay method using Ieuco 2, 3, 6-trichlcroindophenol and application to comparative measurements of peroxidase catalysis. Anal Biochem 27:292–299

    Article  CAS  PubMed  Google Scholar 

  • Patra HL, Kar M, Mishre D (1978) Catalase activity in leaves and cotyledons during plant development and senescence. Biochem Pharmacol 172:385–390

    CAS  Google Scholar 

  • Pinto AP, Mota AM, De Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by Sorghum plants. Sci Total Environ 326:239–247

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi GR, Cai QS (2008) Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46:627–630

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167

    Article  CAS  Google Scholar 

  • Stewart RC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barely genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    Article  CAS  PubMed  Google Scholar 

  • Tonamura B (1978) Test reactions for a stopped flow apparatus regulation of 2, 6-D and potassium ferricyanide by L-ascorbic acid. Anal Biochem 84:370–383

    Article  Google Scholar 

  • Vanesa T, Melina A, Lorenzo L, Raúl C (2011) Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34:909–921

    Article  Google Scholar 

  • Wang X, Liu YG, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X (2008a) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Guad. Environ Exp Bot 63:389–395

    Article  Google Scholar 

  • Wang Z, Zhang YX, Huang ZB, Huang L (2008b) Antioxidative response of metal-accumulator and non-avvumulator plant under cadmium stress. Plant Soil 310:137–149

    Article  CAS  Google Scholar 

  • Wang QH, Liang X, Dong YJ, Xu LL, Zhang XW, Hou J, Fan ZY (2013a) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20

    Article  CAS  Google Scholar 

  • Wang QH, Liang X, Dong YJ, Xu LL, Zhang XW, Kong J, Liu S (2013b) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. J Plant Growth Regul 32:721–731

    Article  CAS  Google Scholar 

  • Weigel HJ, Jäger HJ (1980) Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol 65:480–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FB, Zhang GP (2002) Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings. Bull Environ Contam Toxicol 69:219–227

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, An L, Lu H, Yhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Wang WY, Yin HX, Liu XJ, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Xu MJ, Zhu Y, Dong JF, Jin HH, Sun LN, Wang ZA, Lu ZH, Zhang M, Lu D (2012) Ozone induces flavonol production of Ginkgo biloba cells dependently on nitrate reductase-mediated nitric oxide signaling. Environ Exp Bot 75:114–119

    Article  CAS  Google Scholar 

  • Xu LL, Dong YJ, Kong J, Liu S (2014) Effects of root and foliar applications of exogenous NO on alleviating cadmium toxicity in lettuce seedlings. Plant Growth Regul 72:39–50

    Article  CAS  Google Scholar 

  • Xu LL, Fan ZY, Dong YJ, Kong J, Bai XY (2015) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biol Plant 59(1):171–182

    Article  CAS  Google Scholar 

  • Zhang XW, Zhang M, Wang QH, Qiu XK, Hu GQ, Dong YJ (2011) Effects of exogenous nitric oxide on physiological characteristics of peanut under iron-deficient stress. Plant Nutr Fertil Sci 17:665–673

    CAS  Google Scholar 

  • Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XF, Chen L, Muhammad IAR, Wang QS, Wang SH, Hou PF, Ding YF (2013) Effect of nitric oxide on alleviating cadmium toxicity in rice (Oryza sativa L.). J Integr Agric 12(9):1540–1550

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank lecturer Xiujuan Wang (College of Foreign Languages, Shandong Agricultural University, Shandong, China) for her critical reading and revision of the manuscript. Special acknowledgements are given to the editors and reviewers. Great thanks were given to Pingping Yang, College of Animal Science Technology, Shandong Agricultural University, Shandong, China, for supplying instruments and patient guidance. This research work was financially supported by a Project of Shandong Province Higher Educational Science and Technology Program (J14LF08), the Chinese National Basic Research Program (2015CB150404) and the Shandong Provincial Natural Science Foundation of China (ZR2013CM003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Chen, W., Xu, L. et al. Nitric oxide can induce tolerance to oxidative stress of peanut seedlings under cadmium toxicity. Plant Growth Regul 79, 19–28 (2016). https://doi.org/10.1007/s10725-015-0105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0105-3

Keywords

Navigation