Skip to main content
Log in

Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The interactive effects of salicylic acid (SA) and nitric oxide (NO) on alleviating cadmium (Cd) toxicity in peanut (Arachis hypogaea L.) were studied. Seedlings of two cultivars (Huayu 22 — a big seed type, and Xiaobaisha — a small seed type) were treated with 200 μM CdCl2 without or with 0.1 mM SA or 0.25 mM sodium nitroprusside (SNP, an NO donor). Results show that the Cd exposure depressed the plant growth of both the cultivars but more of Huayu 22 than of Xiaobaisha. Exogenous SA and NO alleviated Cd toxicity in both the peanut cultivars: they improved growth, chlorophyll content, photosynthesis, and mineral nutrition. Furthermore, exogenous SA or NO decreased oxidative stress by increasing activities of antioxidant enzymes and content of non-enzymatic antioxidants. Besides, in roots and leaves of both the cultivars, exogenous SA and NO increased Cd accumulation in the cell wall and decreased Cd distribution to organelles. In particular, the effect of SA+SNP was most obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASA:

ascorbate

CAT:

catalase

Cd:

cadmium

Chl:

chlorophyll

GSH:

glutathione

MDA:

malondialdehyde

O2 ·− :

superoxide anion radical

POD:

peroxidase

ROS:

reactive oxygen species

SA:

salicylic acid

SOD:

superoxide dismutase

SNP:

sodium nitroprusside

TF:

translocation factor

References

  • Ahmad, P., Jaleel, C.A., Azooz, M.M., Nabi, G.: Generation of ROS and nonenzymatic antioxidants during abiotic stress in plants. — Bot Res Int. 2: 11–20, 2009.

    CAS  Google Scholar 

  • Arasimowicz, M., Floryszak-Wieczorek, J.: Nitric oxide as a bioactive signalling molecule in plant stress responses. — Plant Sci. 172: 876–887, 2007.

    Article  CAS  Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barceló, J., Poschenrieder, C.H.: Plant water relations as affected by heavy metal stress: a review. — J. Plant Nutr. 13: 1–37, 1990.

    Article  Google Scholar 

  • Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., Neill, S.J.: ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. — Plant J. 45: 113–122, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Carrier, P., Baryla, A., Havaux, M.: Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. — Planta 216: 939–950, 2003.

    CAS  PubMed  Google Scholar 

  • Chen, F., Wang, F., Sun, H.Y., Cai, Y., Mao, W.H., Zhang, G.P., Vincze, E., Wu, F.B.: Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). — J. Plant Growth Regul. 29: 394–408, 2010.

    Article  CAS  Google Scholar 

  • Chen, F., Wang, F., Zhang, G.P., Wu, F.B.: Identification of barley varieties tolerant to cadmium toxicity. — Biol. Trace Element Res. 121: 171–179, 2008.

    Article  CAS  Google Scholar 

  • Da Cunha. K.P.V., Do Nascimento, C.W.A.: Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. — Water Air Soil Pollut. 197: 323–330, 2009.

    Article  Google Scholar 

  • Dražić, G., Mihailović, N., Lojić, M.: Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. — Biol. Plant. 50: 239–244, 2006.

    Article  Google Scholar 

  • Elstner, E.F., Heupel, A.: Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. — Anal. Biochem. 70: 616–620, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Guo, B., Liang, Y.C., Zhu, Y.G., Zhao, F.J.: Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. — Environ Pollut. 147: 743–749, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Guo, B., Liang, Y., Zhu, Y.: Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? — J. Plant Physiol. 166: 20–31, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, M.J., Shao, G., Zhang, G.: Influence of cadmium toxicity on antioxidant enzymes activity in rice cultivars with different grain Cd accumulation. — J. Plant Nutr. 28: 1259–1270, 2005.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hissin, P.J., Hilf, R.: A fluorometric method for determination of oxidized and reduced glutathione in tissues. — Anal. Biochem. 74: 214–226, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. — Circ. Calif. Agr. Exp. Sta. 347: 29–32, 1950.

    Google Scholar 

  • Jarup, L., Akesson, A.: Current status of cadmium as an environmental health problem. — Toxicol. appl. Pharmacol. 238: 201–208, 2009.

    Article  PubMed  Google Scholar 

  • Kang, G.Z., Li, G.Z., Liu, G.Q., Xu, W., Peng, X.Q., Wang, C.Y., Zhu, Y.J., Guo, T.C.: Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. — Biol. Plant. 57: 718–724, 2013.

    Article  CAS  Google Scholar 

  • Kazemi, N., Khavari-Nejad, R.A., Fahimi, H., Saadatmand, S., Nejad-Sattari, T.: Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. — Scientia Hort. 126: 402–407, 2010.

    Article  CAS  Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. — J. Plant Physiol. 165: 920–931, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Lamattina, L., Garcia-Mata, C., Graziano, M., Pagnussat, G.: Nitric oxide: the versatility of an extensive signal molecule. — Annu. Rev. Plant Biol. 54: 109–136, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Leita, L., De Nobili, M., Mondini, C., Baca-García, M.T.: Response of leguminosae to cadmium exposure. — J. Plant Nutr. 16: 1–12, 1993.

    Article  Google Scholar 

  • Lopez-Carrion, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M., Romero, L.: Role of nitric oxide under saline stress: implications on proline metabolism. — Biol. Plant. 52: 587–591, 2008.

    Article  CAS  Google Scholar 

  • Lozano-Rodriguez, E., Hernandez, L., Bonay, P., Carpena-Ruiz, R.O.: Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. — J. exp. Bot. 48: 123–128, 1997.

    Article  CAS  Google Scholar 

  • Lux, A., Martinka, M., Vaculík, M., White, P.J.: Root responses to cadmium in the rhizosphere: a review. — J. exp. Bot. 62: 21–37, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J.F., Ueno, D., Zhao, F.J., McGrath, S.P.: Subcellular localisation of Cd and Zn in the leaves of a Cdhyperaccumulating ecotype of Thlaspi caerulescens. — Planta. 220: 731–736, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Meng, H.B., Hua, S.J., Shamsi, I.H., Jilani, G., Li, Y.L., Jiang, L.X.: Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. — Plant Growth Regul. 58: 47–59, 2009.

    Article  CAS  Google Scholar 

  • Mishra, A., Choudhuri, M.A.: Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. — Biol. Plant. 42: 409–415, 1999.

    Article  CAS  Google Scholar 

  • Nickel, K.S., Cunningham, B.A.: Improved peroxidase assay method using leuco-2,3,6-trichloroindophenol and application to comparative measurements of peroxidatic catalysis. — Anal. Biochem. 27: 292–299, 1969.

    Article  CAS  PubMed  Google Scholar 

  • Palmgren, M.G., Harper, J.F.: Pumping with plant P-type ATPases. — J. exp. Bot. 50: 883–893, 1999.

    Article  CAS  Google Scholar 

  • Panda, S.K., Patra, H.K.: Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. — Acta Physiol. Plant. 29: 567–575, 2007.

    Article  CAS  Google Scholar 

  • Patra, H.L., Kar, M., Mishre, D.: Catalase activity in leaves and cotyledons during plant development and senescence. — Biochem. Pharmacol. 172: 385–390, 1978.

    CAS  Google Scholar 

  • Pedroso, M.C., Durzan, D.J.: Effect of different gravity environments of DNA fragmentation and cell death in Kalanchoe leaves. — Ann Bot. 86: 983–994, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gómez, M., del Río, L.A., Sandalio, L.M.: Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. — Plant Cell Environ. 29: 1532–1544, 2006.

    Article  PubMed  Google Scholar 

  • Sanita di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants. — Environ. exp. Bot. 41: 105–130, 1999.

    Article  Google Scholar 

  • Senaratana, T., Touchell, D., Bunn, E., Dixon, K.: Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. — Plant Growth Regul. 30: 157–161, 2000.

    Article  Google Scholar 

  • Shi, G.R., Cai, Q.S., Liu, C.F.: Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. — Plant Growth Regul. 61: 45–52, 2010.

    Article  CAS  Google Scholar 

  • Shi, G.R., Cai, Q.S., Liu, Q.Q., Wu, L.: Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. — Acta Physiol. Plant. 31: 969–977, 2009.

    Article  CAS  Google Scholar 

  • Simaeia, M., Khavarinejada, R.A., Saadatmanda, S., Bernardo, F., Fahimia, H.: Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity. — Russ. J. Plant Physiol. 5: 783–790, 2011.

    Article  Google Scholar 

  • Singh, H.P., Batish, D.R., Kaur, G., Arora, K., Kohli, R.K.: Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. — Environ. exp. Bot. 63: 158–167, 2008.

    Article  CAS  Google Scholar 

  • Singh, N., Ma, L.Q., Srivastava, M., Rathinasabapathi, B.: Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. — Plant Sci. 170: 274–282, 2006.

    Article  CAS  Google Scholar 

  • Song, L.L., Ding, W., Zhao, M.G., Sun, B.T., Zhang, L.X.: Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. — Plant Sci. 171: 449–458, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, R.C., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. — Plant Physiol. 65: 245–248, 1980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner, R.G.: The subcellular distribution of zinc and copper within roots of metal-tolerant clones of Agrostis tenuis Sibth. — New Phytol 69: 725–731, 1970.

    Article  CAS  Google Scholar 

  • Vaculík, M., Lux, A., Luxová, M., Tanimoto, E., Lichtscheidl, I.: Silicon mitigates cadmium inhibitory effects in young maize plants. — Environ. exp. Bot. 67: 52–58, 2009.

    Article  Google Scholar 

  • Velikova, V., Yordanov., I, Edreva, A.: Oxidative stress and some antioxidant systems in acid rain-treated bean plants. — Plant Sci. 151: 59–66, 2000.

    Article  CAS  Google Scholar 

  • Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W., Rodriguez, J.: Opposing roles for superoxide and nitric oxide in the NaCl stress-induced upregulation of antioxidant enzyme activity in cotton callus tissue. — Environ. exp. Bot. 62: 60–68, 2008.

    Article  CAS  Google Scholar 

  • Wagner, J.G.: Accumulation of cadmium in crop plants and its consequences to human health. — Adv Agron. 51: 173–210, 1993.

    Article  CAS  Google Scholar 

  • Wang, Q.H., Liang, X., Dong, Y.J., Xu, L.L., Zhang, X.W., Hou, J., Fan, Z.Y.: Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. — Plant Growth Regul. 69: 11–20, 2013a.

    Article  CAS  Google Scholar 

  • Wang, Q.H., Liang, X., Dong, Y.J., Xu, L.L., Zhang, X.W., Kong, J., Liu, S.: Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. — J. Plant Growth Regul. 32: 721–732, 2013b.

    Article  CAS  Google Scholar 

  • Xiong, J., An, L., Lu, H., Yhu, C.: Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. — Planta 230: 755–765, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Z.C., Gao, H.Y., Zhang, L.T.: Effects of cadmium on growth, photosynthetic rate, and chlorophyll content in leaves of soybean seedlings. — Biol. Plant. 57: 587–590, 2013.

    Article  CAS  Google Scholar 

  • Xu, J., Wang, W.Y., Yin, H.X., Liu, X.J., Sun, H., Mi, Q.: Exogenous nitric oxide improves antioxidative capacity and reduced auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. — Plant Soil. 326: 321–330, 2010.

    Article  CAS  Google Scholar 

  • Zhao, L., He, J.X., Wang, X.M., Zhang, L.X.: Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. — J. Plant Physiol. 165: 182–191, 2008.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Dong.

Additional information

Acknowledgements: The authors thank English lecturers Mr. Stuart Craig (the Taishan University, Shandong, China) and Mr. Xiujuan Wang (the College of Foreign Languages, the Shandong Agricultural University, Shandong, China) for their critical reading and revision of the manuscript. Special acknowledgements are given to the editors and reviewers. Great thanks are given to Pingping Yang, the College of Animal Science Technology, the Shandong Agricultural University, Shandong, China, for supplying instruments and patient guidance. This research work was financially supported by the Project of Shandong Province Higher Educational Science and Technology Program (J14LF08) and the Shandong Provincial Natural Science Foundation of China (ZR2013CM003).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L.L., Fan, Z.Y., Dong, Y.J. et al. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biol Plant 59, 171–182 (2015). https://doi.org/10.1007/s10535-014-0475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0475-9

Additional key words

Navigation