Skip to main content
Log in

Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effectiveness of compost in alleviating the negative impacts of salinity on tomato (Solanum lycopersicum cv. Hybrid Guardian F1) plants. An experiment was performed to evaluate the response of plants to compost addition to soil at a rate of 55 g kg−1 soil and NaCl salinity at 0, 50, 100 mM. The results obtained showed a significant decrease in growth-related parameters, i.e. shoot- and root-fresh weight (FW), fruit FW, and fruit yield. Meanwhile, salinity resulted in a significant increase of Na+, electrolyte leakage, lipid peroxidation and hydrogen peroxide in the leaves, but a decrease of N, P, S, K+, Ca2+ and Mg2+ level, as well as K+/Na+ ratio in a dose dependent manner. Under these conditions compost nullified the above negative impacts of salinity caused by 50 mM NaCl and to some extent at 100 mM NaCl. The salinity mediated enhancement in biomarkers of oxidative stress was considerably decreased by compost application which increased the level of ascorbate (ASC) and glutathione (GSH) and the ratios of ASC/dehydroascorbate (DHA) and GSH/glutathione disulfide, as well as the activities of ASC peroxidase, monodehydroascorbate reductase, DHA reductase and GSH reductase in NaCl-treated plants, implying a better reactive oxygen species scavenging system. Data also indicated that compost application resulted in higher activities of leaf carbonic anhydrase, ribulose bisphosphate carboxylase, nitrate reductase and adenosine triphosphate-sulfurylase. These findings collectively suggest that compost plays a pivotal role in inducing salinity tolerance via enhancing an efficient antioxidant system and key C, N and S assimilatory enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aftab T, Khan MMA, Idrees M, Naeem M, Moinuddin (2010) Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. J Crop Sci Biotechnol 13:183–188

    Article  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signalling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 285–314

    Chapter  Google Scholar 

  • Amaya-Carpio L, Davies FT Jr, Fox T, He C (2009) Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. Fistulosa. Phtosynthetica 47:1–10

    Article  CAS  Google Scholar 

  • Amtmann A, Armengaud P (2009) Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol 12:275–283

    Article  CAS  PubMed  Google Scholar 

  • Antolín MC, Muro I, Sánchez-Díaz M (2010) Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ Exp Bot 68:75–82

    Article  Google Scholar 

  • Arena C, Vitale L, Virzo de Santo A (2005) Photosynthetic response of Quercus ilex L. plants grown on compost and exposed to increasing photon flux densities and elevated CO2. Photosynthetica 43:615–619

    Article  Google Scholar 

  • Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, De Nobili M, Aviad T (2004) Stimulatory effects of humic substances on plant growth. Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 103–129

    Google Scholar 

  • Clark GJ, Dodgshun N, Sale PWG, Tang C (2007) Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol Biochem 39:2806–2817

    Article  CAS  Google Scholar 

  • Dionisio-Sese M, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of rapid test for hidden hunger of zinc in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farrell M, Jones DL (2010) Use of composts in the remediation of heavy metal contaminated soil. J Hazard Mater 175:575–582

    Article  CAS  PubMed  Google Scholar 

  • Flores P, Botella MÁ, Cerdá A, Martinez V (2004) Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can J Bot 82:207–213

    Article  Google Scholar 

  • Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Ziogas V, Tanou G, Molassiotis A (2010) Involvement of AsA/DHA and GSH/GSSG ratios in gene and protein expression and in the activation of defence mechanisms under abiotic stress conditions. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 265–302

    Chapter  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox Hub. Plant Physiol 155:2–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giesler R, Lundström U (1993) Soil solution chemistry—effects of bulking soils samples. Soil Sci Soc Am J 57:1283–1288

    Article  CAS  Google Scholar 

  • Goupil P, Loncle D, Druart N, Bellettre A, Rambour S (1998) Influence of ABA on nitrate reductase activity and carbohydrate metabolism in chicory roots (Cichorium intybus L.). J Exp Bot 49:1855–1862

    Article  CAS  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  PubMed  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1996) Antioxidant compound responses to chilling stress in differentially sensitive inbred maize 23 lines. Physiol Plant 98:685–692

    Article  CAS  Google Scholar 

  • Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63:2127–2139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jindo K, Martim SA, Navarro EC, Pérez-Alfocea F, Hernandez T, Garcia C, Aguiar NO, Canellas LP (2012) Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 353:209–220

    Article  CAS  Google Scholar 

  • Kaya C, Kirnak H, Higgs D (2001) Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. J Plant Nutr 24:357–367

    Article  CAS  Google Scholar 

  • Khan NA, Anjum NA, Nazar R (2009) Increased activity of ATP-sulfurylase, contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in high photosynthetic potential mustard (Brassica juncea L.) cultivar. Russ J Plant Physiol 56:670–677

    Article  CAS  Google Scholar 

  • Khan MIR, Syeed S, Nazar R, Anjum NA (2012) An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Khan N, Nazar R, Iqbal N, Anjum N (eds) Phytohormones and abiotic stress tolerance in plants. Springer, London, pp 277–300

    Chapter  Google Scholar 

  • Krivosheeva A, Tao DL, Ottander C, Wingsle G, Dube SL, Öquist G (1996) Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200:296–305

    Article  CAS  Google Scholar 

  • Lakhdar A, Hafsi C, Rabhi M, Debez A, Montemurro F, Abdelly C, Jedidi N, Ouerghi Z (2008) Application of municipal solid waste compost reduces the negative effects of saline water in Hordeum maritimum L. Biores Technol 99:7160–7167

    Article  CAS  Google Scholar 

  • Lakhdar A, Falleh H, Ouni Y, Oueslati S, Debez A, Ksouri R, Abdelly C (2011) Municipal solid waste compost application improves productivity, polyphenol content, and antioxidant capacity of Mesembryanthemum edule. J Hazard Mater 191:373–379

    Article  CAS  PubMed  Google Scholar 

  • Lakhdara A, Rabhia M, Ghnayaa T, Montemurroc F, Jedidi N, Abdellya C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171:29–37

    Article  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2− uptake in intact canola. Plant Physiol 11:147–157

    Google Scholar 

  • Larney FJ, Angers DA (2012) The role of organic amendments in soil reclamation: a review. Can J Soil Sci 92:19–38

    Article  CAS  Google Scholar 

  • Latowski D, Surówka E, Strzałka K (2010) Regulatory role of components of ascorbate–glutathione pathway in plant stress tolerance. In: Anjum NA, Umar S, Chan M-T (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 1–53

    Chapter  Google Scholar 

  • Liang YC, Si J, Nikolic M, Peng Y, Chen W, Jiang Y (2005) Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol Biochem 37:1185–1195

    Article  CAS  Google Scholar 

  • Mao HP, Iwanaga F, Yamanaka N, Yamamoto F (2008) Growth, photosynthesis, and ion distribution in hydroponically cultured Populus alba L. cuttings grown under various salinity concentrations. Landsc Ecol Eng 4:75–82

    Article  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Martínez JP, Araya H (2010) Ascorbate–glutathione cycle: enzymatic and nonenzymatic integrated mechanisms and its biomolecular regulation. In: Anjum NA, Umar S, Chan M-T (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 303–322

    Chapter  Google Scholar 

  • Masciandaro G, Ceccanti B, Benedicto S, Lee H (2001) Humic substances to reduce salt effect on plant germination and growth. Commun Soil Sci Plant Anal 33:3–4

    Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmazi N, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Minz D, Green SJ, Ofek M, Hadar Y (2010) Compost microbial populations and interactions with plants. In: Insam H et al (eds) Microbes at work. Springer, Berlin, pp 232–251

    Google Scholar 

  • Mora V, Bacaicoa E, Zamarrenño AM, Aguirre E, Garnica M, Fuentes M, García-Mina JM (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167:633–642

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Oo AN, Iwai CB, Saenjan P (2013) Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev. doi:10.1002/ldr.2208

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–329

    Article  CAS  PubMed  Google Scholar 

  • Patterson DP, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  CAS  PubMed  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Mena-Petite A, Navari-Izzo F, Muñoz-Rueda A (2010) Lipoic acid and redox in barley plants subjected to salinity and elevated CO2. Physiol Plant 139:256–268

    PubMed  Google Scholar 

  • Provenzano MR, Oliveira SC, Silva MRS, Senesi N (2001) Assessment of maturity degree of composts from domestic solid wastes by fluorescence and Fourier transform infrared spectroscopies. J Agric Food Chem 49:5874–5879

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant–water uptake and plant–water relationships under saline growth conditions. Plant Sci 160:265–272

    Article  CAS  PubMed  Google Scholar 

  • Sawada S, Usuda H, Hasegawa Y, Tsukui T (1990) Regulation of rubisco activity in response to changes of the source/sink balance in single-rooted soybean leaves. Plant Cell Physiol 31:697–704

    CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2010) Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. Taylor & Francis, FL, pp 89–138

    Chapter  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Tartoura KAH (2010) Application of compost alleviates oxidative-stress induced by drought in wheat (Triticum aestivum L.) plants. Am Euras J Agric Environ Sci 9:208–216

    Google Scholar 

  • Tartoura KAH, Youssef SA (2011) Stimulation of ROS-scavenging systems in squash (Cucurbita pepo L.) plants by compost supplementation under normal and low temperature conditions. Sci Hortic 130:862–873

    Article  CAS  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Walker DJ, Bernal MP (2004) Plant mineral nutrition and growth in a saline Mediterranean soil amended with organic wastes. Commun Soil Sci Plant Anal 35:2495–2514

    Article  CAS  Google Scholar 

  • Walker DJ, Bernal MP (2008) The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresour Technol 99:396–403

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Chi-Tsun C, Sciarappa W, Wang CY, Camp MJ (2008) Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J Agric Food Chem 56:5788–5794

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Sun X, Li S, Zhang T, Zhang W et al (2014) Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth. PLoS One 9:e89185. doi:10.1371/journal.pone.0089185

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright AL, Provin TL, Hons FM, Zuberer DA, White RH (2008) Compost impacts on sodicity and salinity in a sandy loam turf grass soil. Compost Sci Util 16:30–35

    Article  Google Scholar 

  • Youssef SA, Tartoura KAH (2013) Compost enhances plant resistance against the bacterial wilt pathogen Ralstonia solanacearum via up-regulation of ascorbate–glutathione redox cycle. Eur J Plant Pathol 137:821–834

    Article  CAS  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    Article  PubMed  Google Scholar 

  • Zucconi F, Pera A, Forte M, Debertoldi M (1981) Evaluating toxicity of immature compost. Biocycle 22:54–57

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of the Environmental Affairs and Community Services, Suez Canal Univ. #127/2008, for applied scientific research. The authors thank Prof. Ahmed M. Hassan, Suez Canal Univ., Ismailia, Egypt, for his critical comments and careful correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel A. H. Tartoura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartoura, K.A.H., Youssef, S.A. & Tartoura, ES.A.A. Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regul 74, 299–310 (2014). https://doi.org/10.1007/s10725-014-9923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-014-9923-y

Keywords

Navigation