Skip to main content

An Insight into the Role of Salicylic Acid and Jasmonic Acid in Salt Stress Tolerance

  • Chapter
  • First Online:
Phytohormones and Abiotic Stress Tolerance in Plants

Abstract

Phytohormones are organic compounds that in small amount promote, inhibit, or modify physiological processes in plants. Researchers have recognized salicylic acid (SA) and jasmonic acid (JA) as a potential hormone. Application of SA and JA could provide tolerance against biotic and abiotic stresses such as salinity, temperature stress, heavy metal stress, etc. The role of SA and JA in the protection against abiotic stress is played by its ability to induce expression of genes coding proteins. A low concentration of SA and JA appears to be effective in tolerance to stress by enhancing physiological processes and improving salt tolerance by its effect on biochemical and molecular mechanisms. The present review gives an insight into the role of SA and JA in inducing various physiological responses in plants under salinity stress, and an interaction between these two phytohormones is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Basra S, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem 40:1061–1069

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species. Antioxidants and signaling in plants. J Plant Biol 51:167–173

    CAS  Google Scholar 

  • Al-Hakimi AMA, Hamada AM (2001) Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol Plant 44:253–261

    Google Scholar 

  • Al-Hamdani SA (2004) Influence of varied NaCl concentrations on selected physiological responses of kudzu. Asian J Plant Sci 3:114–119

    Google Scholar 

  • Andersson MX, Hamberg M, Kourtchenki O, Brunnstrom A, McPhail KL (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana. Formation of a novel oxo-phytodienoic acid-containing galactolipid, Arabidopside. Eur J Biol Chem 281:31528–31537

    CAS  Google Scholar 

  • Anuradha S, Rao SSR (2001) Effect of brassinosteroids on salinity stress induced inhibition of seed germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regul 33:151–153

    CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    PubMed  CAS  Google Scholar 

  • Azooz MM (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int J Agric Biol 11:343–350

    CAS  Google Scholar 

  • Barba-Espın G, Clemente-Moreno MJ, Lvarez S, Garcıa-Legaz MF, Hernandez JA, Dıaz-Vivancos P (2011) Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol. doi:10.1111/j.1438-8677.2011.00461.x

  • Barciszewski J, Siboska G, Rattan SIS, Clark BFC (2000) Occurrence, biosynthesis and properties of kinetin (N6-furfuryladenine). Plant Growth Regul 32:257–265

    CAS  Google Scholar 

  • Blee E (1998) Phytooxylipins and plant defense reactions. Prog Lipid Res 37:33–72

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    PubMed  CAS  Google Scholar 

  • Budi Muljono RA, Scheffer JJC, Verpoorte R (2002) Isochorismate is an intermediate in 2,3-dihydroxybenzoic acid biosynthesis in Catharanthus roseus cell cultures. Plant Physiol Biochem 40:231–234

    CAS  Google Scholar 

  • Cramer GR (1992) Kinetics of maize leaf elongation. II. Response of a Na-excluding cultivar and a Na including cultivar to varying Na/Ca salinities. J Exp Bot 43:857–864

    Google Scholar 

  • Chao WS, Gu YQ, Pautot V, Bray EA, Walling LL (1999) Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol 120:979–992

    PubMed  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed  CAS  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1–13

    PubMed  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    PubMed  CAS  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of salt tolerance in plant. Springer, Netherlands

    Google Scholar 

  • Daneshmand F, Mohammad JA, Khosrow MK (2009) Effect of acetylsalicylic acid (Aspirin) on salt and osmotic stress tolerance in Solanum bulbocastanum in vitro: enzymatic antioxidants. Am Eurasian J Agric Environ Sci 6:92–99

    CAS  Google Scholar 

  • Dash M, Panda SK (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds. Biol Plant 44:587–589

    CAS  Google Scholar 

  • del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    PubMed  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot 92:329–337

    PubMed  CAS  Google Scholar 

  • Doares SH, Narváez-Vásquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    PubMed  CAS  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA 92:11312–11316

    PubMed  CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–225

    CAS  Google Scholar 

  • Engelberth J, Koch T, Schuler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    PubMed  CAS  Google Scholar 

  • Food and Agricultural Organization, FAO (2008). Land and plant nutrition management service. Available online at: http://www.fao.org/ag/agl/agll/spush/. Accessed 25 April

  • Flexas J, Diaz-Espejo A, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    PubMed  CAS  Google Scholar 

  • Gemes K, Poor P, Horvath E, Kolbert Z, Szopko D, Szepesi A, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    PubMed  CAS  Google Scholar 

  • Gfeller A, Liechti R, Farmer EE (2010) Arabidopsis jasmonate signaling pathway. Sci Signal 3:109 cm4

    Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228

    Google Scholar 

  • Giraud E, Ho LHM, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008) The absence of alternative oxidase1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    PubMed  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in non halophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gul B, Khan MA, Weber DJ (2000) Alleviation salinity and dark enforced dormancy in Allenrolfea occidentalis seeds under various thermoperiods. Aust J Bot 48:745–752

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    PubMed  CAS  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1400

    Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97:3735–3740

    PubMed  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010) Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J Agric Food Chem 58:7226–7232

    PubMed  CAS  Google Scholar 

  • Harms K, Ramirez I, Penacortes H (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 118:1057–1065

    PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Mol Plant Physiol 51:463–499

    CAS  Google Scholar 

  • Heck S, Grau T, Buchala A, Metraux JP, Nawrath C (2003) Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis– Pseudomonas syringae pv. tomato interaction. Plant J 36:342–352

    Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300

    Google Scholar 

  • Hoyos M, Zhang SQ (2000) Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyper osmotic stress. Plant Physiol 122:1355–1363

    PubMed  CAS  Google Scholar 

  • Hussein MM, Balbaa LK, Gaballah MS (2007) Salicylic Acid and Salinity Effects on Growth of Maize Plants. Res J Agric Biol Sci 3:321–328

    Google Scholar 

  • Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee YH, Kang H, Lee, I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14:183–192

    PubMed  CAS  Google Scholar 

  • Iqbal M, Ashraf M, Jamil A (2006) Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul 50:29–39

    CAS  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N myristoylation and calcium binding. Plant Cell 12:1667–1677

    PubMed  CAS  Google Scholar 

  • Iuchi S, Yamaguchi-Shinozaki K, Urao T, Shinozaki K (1996) Characterization of two cDNAs for novel drought-inducible genes in the highly drought-tolerant cowpea. J Plant Res 109:415–424

    CAS  Google Scholar 

  • Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Elsevier Trends J 2:22–28

    Google Scholar 

  • Jamil M, Lee KB, Jung KY, Lee DB, Han MS, Rha ES (2007) Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.). Pak J Biol Sci 10:910–914

    PubMed  CAS  Google Scholar 

  • Jin S, Chen CCS, Plant AL (2000) Regulation by ABA of osmotic-stress-induced changes in protein synthesis in tomato roots. Plant Cell Environ 23:51–60

    CAS  Google Scholar 

  • Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, crosstalk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    PubMed  CAS  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2010) Insight into the role of exogenous salicylic acid on plants grown under environment. Asian J Crop Sci 2:226–235

    Google Scholar 

  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mtragyna speciosa. Aust J Crop Sci 5:296–303

    CAS  Google Scholar 

  • Jung J, Park C (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 6:1198–1200

    PubMed  CAS  Google Scholar 

  • Kabar K (1987) Alleviation of salinity stress by plant growth regulators on seed germination. J Plant Physiol 128:179–183

    Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    CAS  Google Scholar 

  • Kawano T, Muto S (2000) Mechanism of peroxidase actions for salicylic acid induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J Exp Bot 51:685–693

    PubMed  CAS  Google Scholar 

  • Kawano T, Furuichi T, Muto S (2004) Controlled free salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnol 21:319–335

    Google Scholar 

  • Keskin BC, Sarikaya AT, Yuksel B, Memon AR (2010) Abscisic acid regulated gene expression in bread wheat. Aust J Crop Sci 4:617–625

    CAS  Google Scholar 

  • Keutgen AJ, Pawelzik E (2009) Impact of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ Exp Bot 65:170–176

    CAS  Google Scholar 

  • Khadri M, Tejera NA, Lluch C (2007) Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ Exp Bot 60:211–218

    CAS  Google Scholar 

  • Khan NA, Nazar R, Anjum NA (2009) Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic 122:455–60

    CAS  Google Scholar 

  • Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:e1

    Google Scholar 

  • Khayyat M, Rajaee S, Sajjadinia A, Eshghi S, Tafazoli E (2009) Calcium effects on changes in chlorophyll contents, dry weight and micronutrients of strawberry (Fragaria ananassa Duch.) plants under salt stress conditions. Fruits 64:1–10

    Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    PubMed  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shali S, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    PubMed  CAS  Google Scholar 

  • Kocsy G, von Ballmoos P, Ruegsegger A, Szalai G, Galiba G, Brunold C (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127:1147–1156

    PubMed  CAS  Google Scholar 

  • Kramell R, Atzorn R, Schneider G, Miersch O, Bruckner C, Schmidt J, Sembdner G, Parthier B (1995) Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J Plant Growth Regul 14:29–36

    CAS  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the oxylipin signature in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–188

    PubMed  CAS  Google Scholar 

  • Kumari GJ, Reddy AM, Naik ST, Kumar SG, Prasanthi J, Sriranganayakulu G, Reddy PC, Sudhakar C (2006) Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biol Planta 50:219–226

    CAS  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HTK1 in sodium uptake by wheat roots. Plant J 32:139–149

    PubMed  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    PubMed  CAS  Google Scholar 

  • Lee DS, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–68

    PubMed  CAS  Google Scholar 

  • Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I (1995) Benzoic acid 2- hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci USA 92:10413–10417

    PubMed  CAS  Google Scholar 

  • Li ZR, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    PubMed  CAS  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    PubMed  CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734

    PubMed  CAS  Google Scholar 

  • Lopez-Gomez E, Sanjuán MA, Diaz-Vivancos P, Mataix Beneyto J, García-Legaz MF, Hernández JA (2007) Effect of salinity and rootstocks on antioxidant systems of loquat plants (Eriobotrya japonica Lindl.): response to supplementary boron addition. Environ Exp Bot 160:151–158

    Google Scholar 

  • Luo JP, Jiang ST, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolising enzyme activities. Plant Science 161:125–132

    Google Scholar 

  • Mass EV, Grieve CM (1987) Sodium induced calcium deficiency in salt-stressed corn. Plant Cell Environ. 10:559–564

    Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effect on the functional biology of legumes. Acta Physiol Plant 30:595–618

    CAS  Google Scholar 

  • Meneguzzo S, Navarri-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155:274–280

    CAS  Google Scholar 

  • Menezes-Benavente L, Teixeira FK, Kamei CLV, Pinheiro MM (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331

    CAS  Google Scholar 

  • Meyer Y, Siala W, Bashandy T (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600

    PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmazi N, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    PubMed  CAS  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    Google Scholar 

  • Moharekar ST, Lokhande SD, Hara T, Tanaka R, Tanaka A, Chavan PD (2003) Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica 41:315–317

    CAS  Google Scholar 

  • Moreno PRH, Van der Heijden R, Verpoorte R (1994) Elicitormediated induction of isochorismate synthase and accumulation of 2,3-dihydroxybenzoic acid in Catharanthus roseus cell suspension and shoot cultures. Plant Cell Rep 14:188–191

    CAS  Google Scholar 

  • Mulholland BJ, Taylor IB, Jackson AC, Thompson AJ (2003) Can ABA mediate responses of salinity stressed tomato. Environ Exp Bot 50:17–28

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    PubMed  CAS  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Erkelens C, Lefeber AWM, Spijksma G, Van der Heijden R, Verpoorte R (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry 70:532–539

    PubMed  CAS  Google Scholar 

  • Navrot N, Rouhier E, Gelhaye JJP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:85–195

    Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815.

    Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139

    PubMed  CAS  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi YS (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    PubMed  CAS  Google Scholar 

  • Parra-Lobato MC, Fernandez-Garcia N, Olmos E, Alvarez-Tinauta MC, Gomez-Jimeneza MC (2009) Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ Exp Bot 66:9–17

    CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pena-Cortes H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    CAS  Google Scholar 

  • Pieterse CM, van Wees SC, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed  CAS  Google Scholar 

  • Popova L, Ananieva E, Hristova V, Christov K, Georgieva K, Alexieva V, Stoinova ZH (2003) Salicylic acid and methyl jasmonate-induced protection on photosynthesis to paraquat oxidative stress. Bulg J Plant Physiol 2003:133–152

    Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role of H2O2. Plant Cell 6:65–74

    PubMed  CAS  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol (Spl Issue):314–319

    Google Scholar 

  • Sanchez-Casas P, Klessig DF (1994) A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol 106:1675–1679

    PubMed  CAS  Google Scholar 

  • Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10:486–488

    Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP (2000) The Arabidopsis delayed dehiscence1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1062

    PubMed  CAS  Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2- hydroxylase and salicylic acid biosynthesis Modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    CAS  Google Scholar 

  • Seckin B, Sekmen AH, Turkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12–20

    CAS  Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and physiology and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–586

    CAS  Google Scholar 

  • Sharma N, Abrams SR, Waterer DR (2005) Uptake, movement, activity, and persistence of an abscisic acid analog (80 acetylene ABA methyl ester) in marigold and tomato. J Plant Growth Regul 24:28–35

    CAS  Google Scholar 

  • Shaterian J, Waterer D, De Jong H, Tanino KK (2005) Differential stress responses to NaCl salt application in early- and late maturing diploid potato (Solanum sp.) clones. Environ Exp Bot 54:202–212

    CAS  Google Scholar 

  • Silva C, Martínez V, Carvajal M (2008) Osmotic versus toxic effects of NaCl on pepper plants. Biol Plant 52:72–79

    CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, van Pelt JA, Mueller MJ, Buchala AJ, Metraux J, Brown R, Kazan K (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    PubMed  CAS  Google Scholar 

  • Steduto P, Albrizio R, Giorio P, Sorrentino G (2000) Gas exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environ Exp Bot 44:243–55

    PubMed  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    PubMed  CAS  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    CAS  Google Scholar 

  • Tabur S, Demir K (2010) Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regul 60:99–104

    CAS  Google Scholar 

  • Thaler JS (1999) Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environ Entomol 28:30–37

    CAS  Google Scholar 

  • Thaler JS, Fidantsef AL, Duffey SS, Bostock RM (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25:1597–1609

    CAS  Google Scholar 

  • Tseng MJ, Liu CW, Yiu JC (2007) Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol Biochem 45:822–833

    PubMed  CAS  Google Scholar 

  • Tsonev TD, Lazova GN, Stoinova ZG, Popova LP (1998) A possible role for jasmonic acid in adaptation of barley seedlings to salinity stress. J Plant Growth Regul 17:153–159

    CAS  Google Scholar 

  • Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 1:2–9

    Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    PubMed  Google Scholar 

  • Unno H, Maeda Y, Yamamoto S, Okamoto M, Takenaga H (2002) Relationship between salt tolerance and Ca2+ retention among plant species. Jpn J Soil Sci Plant Nutr 73:715–718

    CAS  Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Velitcukova M, Fedina I (1998) Response of photosynthesis of Pisum sativum to salt stress as affected by methyl jasmonate. Photosynthetica 35:89–97

    Google Scholar 

  • Verberne MC, Budi Muljono RA, Verpoorte R (1999) Salicylic acid biosynthesis. In: Hooykaas PPJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier Science, Amsterdam

    Google Scholar 

  • Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–477

    PubMed  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    PubMed  CAS  Google Scholar 

  • Wang X (1999) The role of phospholipase D in signaling cascades. Plant Physiol 120:645–651

    PubMed  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasentein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and plant development. Prog Nucleic Acid Res Mol Biol 72:165–221

    PubMed  CAS  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2:302–307

    Google Scholar 

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    PubMed  CAS  Google Scholar 

  • Wenxue W, Bilsborrow PE, Hooley P, Fincham DA, Lombi E, Forster BP (2003) Salinity induced difference in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250:183–191

    Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    PubMed  CAS  Google Scholar 

  • Wilen RW, Ewan BE, Gusta LV (1994) Interaction of abscisic acid and jasmonic acid on the inhibition of seed germination and the induction of freezing tolerance. Can J Bot 72:1009–1017

    CAS  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen activated protein kinase. Plant Cell 15:745–759

    PubMed  CAS  Google Scholar 

  • Yalpani N, Leôn J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    PubMed  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H + antiporters in the salt stress response. Plant J 30:529–539

    PubMed  CAS  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Google Scholar 

  • Zhang S, Klessig D (1997) Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell 9:809–824

    PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 11:520–527

    Google Scholar 

  • Zholkevich VN, Pustovoytova TN (1993) The role of Cucumis sativum L leaves and content of phytohormones under soil drought. Russ J Plant Physiol 40:676–680

    CAS  Google Scholar 

  • Zhu J-K, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis thaliana: evidence of a critical role for potassium nutrition. The Plant Cell 10:1181–1192

    Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63:591–608

    PubMed  CAS  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  CAS  Google Scholar 

  • Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M (2000) Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Iqbal R. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Khan, M.I.R., Syeed, S., Nazar, R., Anjum, N.A. (2012). An Insight into the Role of Salicylic Acid and Jasmonic Acid in Salt Stress Tolerance. In: Khan, N., Nazar, R., Iqbal, N., Anjum, N. (eds) Phytohormones and Abiotic Stress Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25829-9_12

Download citation

Publish with us

Policies and ethics