Skip to main content
Log in

Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The present study evaluates the effect of six loading solutions and five vitrification solutions (VS) and their time of exposure on the survival of oil palm (Elaeis guineensis) polyembryoids in liquid nitrogen (LN). In vitro grown polyembryoids of oil palm were successfully cryopreserved by vitrification with 45% survival. Individual polyembryoids, isolated from 2-month old culture, were precultured in liquid Murashige and Skoog medium supplemented with 0.5 M sucrose for 12 h and treated with a mixture of 10% (w/v) dimethyl sulphoxide (DMSO) plus 0.7 M sucrose for 30 min. Polyembryoids were then subjected to plant vitrification solution-2 (PVS2) (30% (w/v) glycerol plus 15% (w/v) EG plus 15% (w/v) DMSO plus 0.4 M sucrose) exposure for 5 min at 26 ± 2°C and subsequently plunged into LN. Thawed polyembryoids resumed growth within 8 days of culture and shoot development was recorded at 25 days of growth. Scanning electron micrograph revealed that successful regeneration of cryopreserved polyembryoids was due to stabilization of cellular integrity through optimum VS exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LN:

Liquid nitrogen

LS:

Loading solution

MS:

Murashige and Skoog (1962)

SEM:

Scanning electron microscope

VS:

Vitrification solution

MC:

Moisture content

References

  • Benson EE, Harding K, Smith H (1989) Variation in recovery of cryopreserved shoot-tips of Solanum tuberosum exposed to different pre- and post-freeze light regimes. Cryo-Letters 10:323–344

    Google Scholar 

  • Cochard B, Durand-Gasselin T, Amblard P, Konan EK, Gogor S (2000) Performance of adult oil palm clones. In: Emerging technologies and opportunities in the next millennium. Agriculture conference: proceedings of 1999 PORIM international palm oil congress (PIPOC 1999). Kuala Lumpur, Malaysia, pp 53–64

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Engelmann F, Dumet D, Chabrillange N, Abdelnour-Esquivel A, Assy Bah B, Dereuddre J, Duval Y (1995a) Cryopreservation of zygotic and somatic embryos from recalcitrant and intermediate-seed species. Plant Genet Res Newsl 103:27–31

    Google Scholar 

  • Engelmann F, Chabrillange N, Dussert S, Duval Y (1995b) Cryopreservation of zygotic embryos and kernels of oil palm (Eaeis guineensis Jacq.). Seed Sci Res 5:81–86

    Article  Google Scholar 

  • Fábián A, Jäger K, Darkó É, Barnabás B (2008) Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification. Acta Physiol Plant 30:737–744

    Article  Google Scholar 

  • Gallard A, Panis B, Dorion N, Swennen R, Grapin A (2008) Cryopreservation of Pelargonium apices by droplet-vitrification. Cryo-Letters 29:243–251

    PubMed  Google Scholar 

  • Gonzalez-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Organ Cult 92:1–13

    Article  Google Scholar 

  • Hong SR, Yin MH (2009) High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of rare and endangered plant Emmenopterys henryi Oliv. Plant Cell Tiss Organ Cult 99:217–226

    Article  CAS  Google Scholar 

  • Hong S, Yin M, Shao X, Wang A, Xu W (2009a) Cryopreservation of embryogenic callus of Dioscorea bulbifera by vitrification. Cryo-Letters 30:64–75

    PubMed  CAS  Google Scholar 

  • Hong SR, Yin MH, Shao XH, Wang AP, Xu WH (2009b) Cryopreservation of embryogenic callus of Dioscorea bulbifera by vitrification. Cryo-Letters 30:64–75

    PubMed  CAS  Google Scholar 

  • Huang CN, Wang JH, Yan QS, Zhang XQ, Yan QF (1995) Plant regeneration from rice (Oryza sativa L.) embryogenic suspension cells cryopreserved by vitrification. Plant Cell Rep 14:730–734

    Google Scholar 

  • Ishikawa K, Harata K, Mili M, Sakai A, Yoshimatsu K, Shimomura K (1997) Cryopreservation of zygotic embryos of Japanese terrestrial orchid (Bletilla striata) by vitrification. Plant Cell Rep 16:754–757

    Article  CAS  Google Scholar 

  • ISTA (2005) International rules for seed testing. International Seed Testing Association, Zurich

    Google Scholar 

  • Jitsopakul N, Thammasiri K, Ishikawa K (2008) Cryopreservation of Bletilla striata mature seeds, 3-day germinating seeds and protocorms by droplet-vitrification. Cryo-Letters 29:517–526

    PubMed  CAS  Google Scholar 

  • Jiwu Z, Ganjun Y, Qiuming Z (2007) Micropropagation and cryopreservation of in vitro shoot tips of ‘Suizhonghong’ papaya. Acta Hortic 760:217–224

    Google Scholar 

  • Kaity A, Ashmore SE, Drew RA, Dullo ME (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Kim HH, Lee YG, Park SU, Lee SC, Baek HJ, Cho EG, Engelmann F (2009) Development of alternative loading solutions in droplet-vitrification procedures. Cryo-Letters 30:291–299

    PubMed  CAS  Google Scholar 

  • Kim HH, Popova EV, Yi JY, Cho GT, Park SU, Lee SC, Engelmann F (2010) Cryopreservation of hairy roots of Rubia akane (Nakai) using a droplet-vitrification procedure. Cryo-Letters 31:473–484

    PubMed  Google Scholar 

  • Kohmura H, Ikeda Y, Sakai A (1994) Cryopreservation of apical meristems of Japanese shallot (Allium wakegi) by vitrification and subsequent high plant regeneration. Cryo-Letters 15:289–298

    Google Scholar 

  • Lambardi M, Fabbri A, Caccavale A (2000) Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep 19:213–218

    Google Scholar 

  • Langis R, Schnabel-Preikstas ED, Steponkus PL (1990) Cryopreservation of carnation shoot tips by vitrification. Cryobiology 27:657–658

    Google Scholar 

  • Li MJ, Zhao XT, Hong SR, Zhang XL, Li P, Liu J, Xie CH (2009) Cryopreservation of plantlet nodes of Dioscorea opposita Thunb. using vitrification method. Cryo-Letters 30:19–28

    PubMed  Google Scholar 

  • Marco-Medina A, Casas JL, Gonzalez-Benito ME (2010a) Comparison of vitrification and encapsulation-dehydration for cryopreservation of Thymus moroderi shoot tips. Cryo-Letters 31:301–309

    PubMed  CAS  Google Scholar 

  • Marco-Medina A, Casas JL, Swennen R, Panis B (2010b) Cryopreservation of Thymus moroderi by droplet vitrification. Cryo-Letters 31:14–23

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446

    Article  Google Scholar 

  • Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro grown apical meristems of lily by vitrification. Plant Cell Tiss Organ Cult 41:237–241

    Article  CAS  Google Scholar 

  • Mielke S (1991) Economic prospects for oilseeds, oils and fats toward the 21st century. In: Basiron Y, Ibrahim A (ed) The proceedings of the 1991 PORIM international palm oil conference. Module IV: promotion and marketing. September 9–14, Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 1–16

  • Mukherjee P, Mandal BB, Bhat KV, Biswas AK (2009) Cryopreservation of asian Dioscorea bulbifera L. and D. alata L. by vitrification: importance of plant growth regulators. Cryo-Letters 30:100–111

    PubMed  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Organ Cult 28:261–266

    Article  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1992) Cryopreservation of asparagus (Asparagus officinalis L. Osb.) embryogenic cells and subsequent plant regeneration by a simple freezing method. Cryo-Letters 13:379–388

    Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Panis B, Swennen R, Engelmann F (2001) Cryopreservation of plant germplasm. Acta Hortic 560:79–86

    CAS  Google Scholar 

  • Park WJ, Kang YM, Min JY, Park DJ, Kim YD, Karigar CS, Choi US (2004) In vitro propagation of junos orange (Citrus junos sieb) through nucellar polyembryoid cultures and RAPD analysis of regenerated plants. Korean J Med Crop Sci 12:384–390

    Google Scholar 

  • Reinhoud PJ, Schrijnemakers EWM, Iren F, Kijne JW (1995) Vitrification and a heat-shock treatment improve cryopreservation of tobacco cell suspension compared to two-step freezing. Plant Cell Tiss Organ Cult 42:261–267

    Article  Google Scholar 

  • Roberts LW (1951) Survey of factors responsible for reduction of 2, 3, 5-triphenyltetrazolium chloride in plant meristems. Science 113:692–693

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  Google Scholar 

  • Sopalun K, Kanchit K, Ishikawa K (2010) Vitrification-based cryopreservation of Grammatophyllum speciosum protocorm. Cryo-Letters 31:347–357

    PubMed  CAS  Google Scholar 

  • Steponkus PL, Lanphear FO (1967) Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol 42:1423–1426

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Thinh NT, Islam OM, Senboku T, Sakai A (1997) Cryopreservation of in vitro grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. 1. Investigation of basic conditions of the vitrification procedure. Plant Cell Rep 16:594–599

    Article  CAS  Google Scholar 

  • Thammasiri K (1999) Cryopreservation of embryonic axes of jackfruit. Cryo-Letters 20:21–28

    Google Scholar 

  • Towill LE (1990) Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep 9:178–180

    Article  Google Scholar 

  • Tsai SF, Yeh SD, Chan CF, Liaw SI (2009) High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of transgenic papaya lines. Plant Cell Tiss Organ Cult 98:157–164

    Article  CAS  Google Scholar 

  • Ulrich JM, Finkle BJ, Moore PH, Ginoza H (1979) Cryobiology 16:550–556

    Google Scholar 

  • Uragami A, Sakai A, Nakai M, Takahashi T (1989) Survival of culture cells and somatic embryos of embryos of Asparagus offcinalis cryopreserved by vitrification. Plant Cell Rep 8:418–421

    Article  Google Scholar 

  • Wang QC, Gafny R, Sahar N, Sela I, Mawassi M, Tanne E, Perl A (2002) Cryopreservation of grapevine (Vitis vinifera L.) embryogenic cell suspensions and subsequent plant regeneration by encapsulation-dehydration. Plant Sci 162:551–558

    Article  CAS  Google Scholar 

  • Watanabe K, Steponkus PC (1995) Vitrification of Oryza sative L. cell suspension. Cryo-Letters 16:255–262

    Google Scholar 

  • Yin MH, Hong SR (2009) Cryopreservation of Dendrobium candidum Wall. ex Lindl. protocorm-like bodies by encapsulation vitrification. Plant Cell Tiss Organ Cult 98:179–185

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Department of Crop Science, Faculty of Agriculture, Universiti Putra, Malaysia for the facilities and Yayasan Felda, Malaysia for the financial support through research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Rani Sinniah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suranthran, P., Gantait, S., Sinniah, U.R. et al. Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regul 66, 101–109 (2012). https://doi.org/10.1007/s10725-011-9633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-011-9633-7

Keywords

Navigation