Skip to main content
Log in

High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of transgenic papaya lines

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In vitro grown shoot tips of transgenic papaya lines (Carica papaya L.) were successfully cryopreserved by vitrification. Shoot tips were excised from stock shoots that were preconditioned in vitro for 45–50-day-old and placed on hormone-free MS medium with 0.09 M sucrose. After loading for 60 min with a mixture of 2 M glycerol and 0.4 M sucrose at 25°C, shoot tips were dehydrated with a highly concentrated vitrification solution (PVS2) for 80 min at 0°C and plunged directly into liquid nitrogen. The regeneration rate was approximately 90% after 2 months post-thawing. Successfully vitrified and warmed shoot tips of three non-transgenic varieties and 13 transgenic lines resumed growth within 2 months and developed shoots in the absence of intermediate callus formation. Dehydration with PVS2 was important for the cryopreservation of transgenic papaya lines. This vitrification procedure for cryopreservation appears to be promising as a routine method for cryopreserving shoot tips of transgenic papaya line germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BA:

6-Benzylaminopurine

DMSO:

Dimethylsulfoxide

IBA:

Indole-3-butyric acid

LN:

Liquid nitrogen

LS:

Loading solution

MS:

Murashinge and Skoog medium

PLDMV:

Papaya leaf-distortion mosaic virus

PRSV:

Papaya ringspot virus

PVS:

Plant vitrification solution

References

  • Ashmore SE, Azimi M, Drew RA (2001) Cryopreservation trials in Carica papaya. Acta Hortic 560:117–120

    CAS  Google Scholar 

  • Ashmore SE, Drew RA, Azimi M (2007) Vitrification-based shoot tips cryopreservation of Carica papaya and a wild relative Vasconcellea pubescens. Aust J Bot 55:541–547. doi:10.1071/BT06144

    Article  CAS  Google Scholar 

  • Azimi M, O’Brien C, Ashmore S, Drew R (2005) Cryopreservation of papaya germplasm. Acta Hortic 692:43–50

    Google Scholar 

  • Charoensub R, Phansiri S, Sakai A, Yongmanitchai W (1999) Cryopreservation of cassava in vitro-grown shoot tips cooled to −196°C by vitrification. Cryo Letters 20:89–94

    Google Scholar 

  • Cheng YH, Yang JS, Yeh SD (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissue with caborundum. Plant Cell Rep 16:127–132. doi:10.1007/s002990050191

    Article  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipids bilayers and proteins by sugars. Biochem J 242:1–10

    PubMed  CAS  Google Scholar 

  • Drew R, Ashmore S, Somsri S, Noor N, Thi Hoa T, Damasco O, Rao R (2007) Advanced technologies for germplasm conservation of tropical fruit species. Acta Hortic 760:91–98

    CAS  Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm-a review. Euphytica 57:227–243. doi:10.1007/BF00039669

    Article  Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Caiiow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CAB International, Oxford, pp 119–161

    Google Scholar 

  • González-Arnao MT, Moreira T, Urra C (1996) Importance of pregrowth with sucrose and vitrification for the cryopreservation of sugarcane apices using encapsulation-dehydration. Cryo Letters 17:141–148

    Google Scholar 

  • Grospietsch M, Stodůlková E, Zámečník J (1999) Effect of osmotic stress on the dehydration tolerance and cryopreservation of Solanum tuberosum shoot tips. Cryo Letters 20:339–346

    Google Scholar 

  • Jiwu Z, Ganjun Y, Qiuming Z (2007) Micropropagation and cryopreservation of in vitro shoot tips of ‘Suizhonghong’ papaya. Acta Hortic 760:217–224

    Google Scholar 

  • Kaity A, Ashmore SE, Drew RA, Dullo ME (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539. doi:10.1007/s00299-008-0558-1

    Article  PubMed  CAS  Google Scholar 

  • Lambardi M, Fabbri A, Caccavale A (2000) Cryopreservation of white poplar (Populus alba L.) by vitrification of in vitro-grown shoot tips. Plant Cell Rep 19:213–218. doi:10.1007/s002990050001

    Article  CAS  Google Scholar 

  • Langis R, Schnabel-Preikstas ED, Steponkus PL (1990) Cryopreservation of carnation shoot tips by vitrification. Cryobiology 27:657–658

    Google Scholar 

  • Leunufna S, Keller ERJ (2003) Investigating a new cryopreservation protocol for yams (Dioscorea spp.). Plant Cell Rep 21:1159–1166. doi:10.1007/s00299-003-0652-3

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Reed BM (1997) Abscisic acid-responsive protein, bovine serum albumin, and proline pretreatment improve recovery of in vitro currant shoot-tip meristems and callus cryopreserved by vitrification. Cryobiology 34:240–250. doi:10.1006/cryo.1997.2000S0011-2240(97)92000-9

    Article  CAS  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446. doi:10.1007/BF00231963

    Article  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of lily by vitrification. Plant Cell Tiss Org Cult 41:237–241. doi:10.1007/BF00045087

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73. doi:10.1016/0168-9452(93)90189-7

    Article  CAS  Google Scholar 

  • Oliver AE, Crowe LM, Crowe JH (1998) Methods for dehydration-tolerance: depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Sci Res 8:211–221. doi:10.1017/S0960258500004128

    Article  CAS  Google Scholar 

  • Panis B, Swennen R, Engelmann F (2001) Cryopreservation of plant germplasm. Acta Hortic 560:79–86

    CAS  Google Scholar 

  • Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato [Ipomoea batatas (L.) Lam.] by vitrification. Plant Cell Rep 19:733–737. doi:10.1007/s002999900171

    Article  CAS  Google Scholar 

  • Rall WF (1987) Factors affecting the survival of mouse embryo cryopreserved by vitrification. Cryobiology 24:367–402

    Google Scholar 

  • Reed BM (2001) Implementing cryogenic storage of clonally propagated plants. Cryo Letters 22:97–104

    PubMed  CAS  Google Scholar 

  • Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. JIRCAS, Tsukuba, Japan, pp 1–7

    Google Scholar 

  • Sakai A, Hirai D (2003) Simplified cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] by optimizing conditions for osmoprotection. Plant Cell Rep 21:961–966. doi:10.1007/s00299-003-0618-5

    Article  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Survival by vitrification of nucellar cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33. doi:10.1007/BF00232130

    Article  Google Scholar 

  • Takagi H, Thinh NT, Islam OM, Senboku T (1997) Cryopreservation of in vitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott) by vitrification. 1. Investigation of basic conditions of the vitrification procedure. Plant Cell Rep 16:594–599. doi:10.1007/s002990050285

  • Thinh NT, Takagi H, Yashima S (1999) Cryopreservation of in vitro-grown shoot tips of banana (Musa spp.) by vitrification method. Cryo Letters 20:163–174

    Google Scholar 

  • Turner S, Senaratna T, Touchell D, Bunn E, Dixon K, Tan B (2001a) Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci 160:489–497. doi:S0168-9452(00)00420-9

    Article  PubMed  CAS  Google Scholar 

  • Turner S, Senaratna T, Bunn E, Tan B, Dixon K, Touchell D (2001b) Cryopreservation of shoot tips from six endangered Australian species using a modified vitrification protocol. Ann Bot (Lond) 87:371–378. doi:10.1006/anbo.2000.1346

    Article  CAS  Google Scholar 

  • Urbanová M, Košuth J, Čellárová E (2006) Genetic and biochemical analysis of Hypericum perforatum L. plants regenerated after cryopreservation. Plant Cell Rep 25:140–147. doi:10.1007/s00299-005-0050-0

    Article  PubMed  Google Scholar 

  • Wang HL, Yeh SD, Chiu RJ, Gonsalves D (1987) Effectiveness of cross protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant Dis 71:491–497. doi:10.1094/PD-71-0491

    Article  Google Scholar 

  • Wang YL, Fang MJ, Liaw SI (2005) Cryopreservation of in vitro-grown shoot tips of papaya (Carica papaya L.) by vitrification. Bot Bull Acad Sin 46:29–34

    Google Scholar 

  • Yamada T, Sakai A, Matsumura T, Higuchi S (1991) Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Sci 78:81–87. doi:10.1016/0168-9452(91)90164-4

    Article  CAS  Google Scholar 

  • Yamada T, Kuroda K, Jitsuyama Y, Daisuke T, Arakawa K, Fujikawa S (2002) Roles of the plasma membrane and the cell wall in the response of plant cells to freezing. Planta 215:770–778. doi:10.1007/s00425-002-0814-5

    Article  PubMed  CAS  Google Scholar 

  • Yie ST, Liaw SI (1977) Plant regeneration from shoot tips and callus of papaya. In Vitro 13:564–568. doi:10.1007/BF02627852

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Agriculture, Executive Yuan, ROC. for financial support. Stock materials were kindly provided by Professor S. D. Yeh of the laboratory, Department of Plant Pathology, National Chung-Hsing University of Taichung, ROC. Also, the authors greatly thank Professor Hungchen-Emilie Yen, Department of Life Science, National Chung-Hsing University of Taichung, ROC, for her suggestions on improvements to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Iuan Liaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, SF., Yeh, SD., Chan, CF. et al. High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of transgenic papaya lines. Plant Cell Tiss Organ Cult 98, 157–164 (2009). https://doi.org/10.1007/s11240-009-9548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9548-4

Keywords

Navigation