Skip to main content
Log in

Q gene variability in wheat species with different spike morphology

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Q gene is the major domestication gene of wheat and many questions concerning Q gene genetics, including Q gene variability and its functional influence on phenotype, remain unanswered for the majority of wheat species. Here we crossed wheat species with dominant (Q) and recessive (q) alleles and confirmed that Q gene controls threshability, rachis fragility and spike shape traits. In the present study 18 new Q gene sequences were obtained and the Q gene sequences from 42 di- and polyploid wheat species with variable spike morphology were analyzed. We identified correlation between Q gene variability (coding mutation 329Val/Ile, promoter variability, microRNA172 binding site substitution) and threshability, rachis fragility and spike shape traits in polyploid wheat species. The analysis of 3D structures of q and Q proteins indicated that 329Val/Ile mutation does not affect overall protein structure and likely protein activity. We conclude that alterations in all three regions are essential for the formation of free-threshing non fragile normal phenotype in polyploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet 39:1517–1521

    Article  CAS  PubMed  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubtsiner MM (1979) Pshenitsa (Wheat). In: Dorofeev VF, Korovina ON (eds) Cultivated flora of the USSR, vol 1. Kolos, Leningrad, p 348

    Google Scholar 

  • Dror O, Benyamini H, Nussinov R, Wolfson HJ (2003) Multiple structural alignment by secondary structures: algorithm and applications. Protein Sci 12:2492–2507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dvorak J, Deal KR, Luo MC, You FM, von Borstel K, Dehghani H (2012) The origin of spelt and free-threshing hexaploid wheat. J Hered 103:426–441. doi:10.1093/jhered/esr152

    Article  CAS  PubMed  Google Scholar 

  • Endo TR, Mukai Y (1988) Chromosome mapping of a speltoid suppression gene of Triticum aestivum L. based on partial deletions in the long arm of chromosome 5A. Japan J Genet 63:501–505

    Article  Google Scholar 

  • Faris JD, Gill BS (2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45:706–718

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faris JD, Simons KJ, Zhang Z, Gill BS (2006) The wheat super domestication gene Q. Frontiers of wheat bioscience: wheat information service 100:129–148

    Google Scholar 

  • Feldman MF (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Lavoisier Publishing, Paris, pp 1–56

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

    Article  Google Scholar 

  • Flaksberger KA (1935) Pshenitsi—rod Triticum L. pr. p. (Wheats—genus Triticum L. pr. p.). In: Wulff EV (ed) Cultivated flora of the USSR. Moscow, Leningrad, Gosselkhozgiz, pp 19–434

    Google Scholar 

  • Golovnina KA, Kondratenko E, Blinov AG, Goncharov NP (2009) Phylogeny of the A genomes of wild and cultivated wheat species. Russ J Genet 45:1360–1367

    Article  CAS  Google Scholar 

  • Goncharov NP (2011) Genus Triticum L. taxonomy: the present and the future. Plant Syst Evol 295:1–11

    Article  Google Scholar 

  • Goncharov NP, Gaidalenok RF (2005) Localization of genes controlling spherical grain and compact ear in Triticum antiquorum Heer ex Udacz. Russ J Genet 41:1262–1267

    Article  CAS  Google Scholar 

  • Goncharov NP, Golovnina KA, Kilian B, Glushkov S, Blinov A, Shumny VK (2008) Evolutionary history of wheats—the main cereal of mankind. In: Dobretsov N et al (eds) Biosphere origin and evolution. Springer, New York, pp 407–419

    Chapter  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. Kulturpflanze 32:11–34

    Article  Google Scholar 

  • Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and × Triticocecale Wittm. Genet Resour Crop Evol 58:3–10

    Article  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJ, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Kerber ER, Rowland GG (1974) Origin of the free threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154. doi:10.1139/g74-014

    Article  Google Scholar 

  • Kimber G, Sears ER (1983) Assignment of genome symbols in Triticeae. In: Proceedings of the sixth International Wheat Genetics Symposium, Maruzen, Kyoto, Japan, pp 1195–1196

  • Kosuge KW, Watanabe N, Melnik VM, Laikova LI, Goncharov NP (2012) New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat. Genet Resour Crop Evol 59:1115–1124

    Article  Google Scholar 

  • Koval SF (1997) The catolog of near-isogenic lines of Novosibirskaya-67 common wheat and principles of their use in experiments. Genetika 33:1168–1173

    Google Scholar 

  • Leighty CE, Boshnakian S (1921) Genetic behaviour of the spelt form in crosses between Triticum spelta and Triticum aestivum. J Agri Res 7:335–364

    Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5:378–388

    Article  CAS  PubMed  Google Scholar 

  • MacKey J (1954) Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40:65–180

    Google Scholar 

  • MacKey J (1966) Species relationship in Triticum. Hereditas Suppl 2:237–275

    Google Scholar 

  • Matsuoka Y (2011) Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764. doi:10.1093/pcp/pcr018

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Reader SM (1982) A major deletion of part of chromosome 5A of Triticum aestivum. Wheat Inf Serv 55:10–12

    Google Scholar 

  • Muramatsu M (1963) Dosage effect of the spelta gene Q of hexaploid wheat. Genetics 48:469–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muramatsu M (1986) The vulgare super gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can J Genet Cytol 28:30–41. doi:10.1139/g86-006

    Article  Google Scholar 

  • Nalam VJ, Vales MI, Watson CJ, Johnson EB, Riera-Lizarazu O (2007) Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theor Appl Genet 116:135–145

    Article  PubMed  Google Scholar 

  • Nilsson-Ehle H (1917) Untersuchungen über Speltoidmutationen beim Weizen. Bot Notiser, pp 305–329

  • Nilsson-Ehle H (1920) Multiple Allelomorphe und Komplexmutationen beim Weizen (Untersuchungen über Speltoidmutationen beim Weizen. II). Hereditas 1:277–311

    Article  Google Scholar 

  • Okonechnikov K, Golosova O, Fursov M, Yarlamov A, Vaskin Y, Efremov I, Grehov G, Kandrov D, Rasputin K, Syabro M et al (2012) UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. doi:10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  • Papoglou Ch, Coucolli H, Tsekos I (1981) Speltoid mutants of Triticum aestivum studied by cytological and electrophoretical methods. Berichte der Deutschen Botanischen Gesellschaft 93:689–700

    Google Scholar 

  • Peng J, Sun D, Nevo E (2011) Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process. Aust J Crop Sci 5:1127–1143

    Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. doi:10.1038/nprot.2010.5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Sang T (2009) Genes and mutations underlying domestication transitions in grasses. Plant Physiol 149:63–70. doi:10.1104/pp.108.128827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Mo Agr Exp Stat Res Bull 572:1–59

    Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sood S, Kuraparthy V, Bai G, Gill BS (2009) The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor Appl Genet 119:341–351. doi:10.1007/s00122-009-1043-0

    Article  PubMed  Google Scholar 

  • Swaminathan MS, Rao MVP (1961) Macro-mutations and sub-specific differentiation in Triticum. Wheat Inf Serv 13:9–11

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsujimoto H (2001) Production of near-isogenic lines and marked monosomic lines in common wheat (Triticum aestivum) cv. Chinese Spring. J Hered 92:254–259

    Article  CAS  PubMed  Google Scholar 

  • Winge Ö (1924) Zytologische Untersuchungen über speltoide und andere mutantenähnliche Aberranten beim Weizen. Hereditas 5:241–286

    Article  Google Scholar 

  • Zhang Z, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, Samain S, Gill BS et al (2011) Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc Natl Acad Sci USA 108:18737–18742. doi:10.1073/pnas.1110552108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Julie Hayes, Australian Centre for Plant Functional Genomics, the University of Adelaide, Australia, for helpful comments on our manuscript. Partial financial support of this investigation was provided by the Russian Foundation for Basic Research (Grant No. 12-04-01099-a) and Basis Project of RAS No. VI.53.1.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Sormacheva.

Additional information

Irina Sormacheva and Kseniya Golovnina have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sormacheva, I., Golovnina, K., Vavilova, V. et al. Q gene variability in wheat species with different spike morphology. Genet Resour Crop Evol 62, 837–852 (2015). https://doi.org/10.1007/s10722-014-0195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0195-1

Keywords

Navigation