Skip to main content
Log in

New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Little is known about the relationship between compact spike loci in hexaploid wheat species. We studied two new compact spike mutants of common wheat Triticum aestivum L. (2n = 6x = 42, genome formula BBAADD). The new compact spike genes, C 739 of MCK 739 and Cp of near-isogenic line Mironovskaya 808 (Vrn1), were mapped using aneuploid stocks and microsatellite markers. The C 739 and Cp loci were distally linked with the microsatellite marker Xbarc319 in the F2 populations of MCK 739 × ‘Novosibirskaya 67’ and Cp-Mironovskaya 808 (Vrn1) × ‘Saratovskaya 29’. It was evident that the loci affecting compact spikes in T. aestivum mutants were located on chromosome 5AL distal from Q locus. These loci also affected to semi-dwarfism. We named this locus Cp1 (C ompact p lant 1) for all accessions. Cp1 was allelic to C 17648 gene located on the chromosome 5AL of tetraploid wheat [Triticum durum Desf. (2n = 4x = 28, genome formula BBAA)]. These dominant genes on chromosome 5AL will be utilized as new gene resources of compact spike morphology in hexaploid wheat. Relationship between loci Q and Cp1 was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asakura N, Mori N, Nakamura C, Ohtsuka I (2009) Genotyping of the Q locus in wheat by a simple PCR-RFLP method. Gen Genet Syst 84:233–237

    Article  CAS  Google Scholar 

  • Chen A, Baumann U, Fincher GB, Collins NC (2009) Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Funct Integr Gen 9:243–254

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubtsiner MM (1979) Pshenitsa (wheat). In: Dorofeev VF, Korovina ON (eds) Cultivated flora of the USSR, vol 1 (in Russian). Kolos, Leningrad

  • Faris JD, Feller JP, Brroks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Goncharov NP, Gaidalenok RF (2005) Localization of genes controlling spherical grain and compact ear in Triticum antiquorum Heer ex Udacz. Russ J Genet 41:1262–1267

    Article  CAS  Google Scholar 

  • Goncharov NP, Kondratenko EY, Kawahara T (2002) Inheritance of dense spike in diploid wheat and Aegilops squarrosa. Hereditas 137:96–100

    Article  PubMed  CAS  Google Scholar 

  • Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and ×Triticocecale Wittm. Genet Resour Crop Evol 58:3–10

    Article  Google Scholar 

  • Hayden MJ, Stephenson P, Logojan AM, Snape JW, Sharp PJ, Khatkar D, Rogers C, Elsden J, Koebner RMD (2006) Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.). Theor Appl Genet 113:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  PubMed  CAS  Google Scholar 

  • Johnson ER, Nalam VJ, Zemetra RS, Riera-Lizarazu O (2008) Mapping the compactum locus in wheat (Triticum aestivum L.) and its relationship to other spike morphology genes of the Triticeae. Euphytica 163:193–201

    Article  Google Scholar 

  • Kato K, Sonokawa R, Miura H, Sawada S (2003) Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed 122:489–492

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kosuge K, Watanabe N, Kuboyama T, Melnik VM, Yanchenko VI, Rosova MA, Goncharov NP (2008) Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica 159:289–296

    Article  CAS  Google Scholar 

  • Koval SF (1997) The catalogue of near-isogenic lines of Novosibirskaya 67 common wheat and principles of their use in experiments. Genetika 33:1168–1173

    Google Scholar 

  • Laikova LI, Goncharov NP, Popova OP, Melnik VM, Mitrofanova OP, Watanabe N (2009) Genetic studies of bread wheat mutants. Bull Appl Bot Genet Breed 166:396–399

    Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mam Genome 12:930–932

    Article  CAS  Google Scholar 

  • Mitrofanova OP (1997) The inheritance and effect of Cp (Compact plant) mutation induced in common wheat. Genetika 33:482–488

    Google Scholar 

  • Muramatsu M (1963) Dosage effect of the spelta gene q of hexaploid wheat. Genetics 48:469–482

    PubMed  CAS  Google Scholar 

  • Muramatsu M (1985) Spike type in two cultivars of Triticum dicoccum with the spelta gene q compared with Q-bearing variety of liguliforme. Jpn J Breed 35:255–267

    Google Scholar 

  • Ning S-Z, Chen Q-J, Yuan Z-W, Zhang L-Q, Yan Z-H, Zheng Y-L, Liu D-C (2009) Characterization of WAP2 gene in Aegilops tauschii and comparison with homoeologous loci in wheat. J Syst Evol 47(6):543–551

    Article  Google Scholar 

  • Pestsova E, Röder M (2002) Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet 106:84–91

    PubMed  CAS  Google Scholar 

  • Rao MVP (1972) Mapping of the compactum gene C on chromosome 2D of wheat. Wheat Inf Serv 35:9

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixer M-H, Leroy PH, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schlegel R, Melz G, Korzun V (1998) Genes, marker and linkage data of rye (Secale cereale L.): 5th updated inventory. Euphytica 101:23–67

    Article  CAS  Google Scholar 

  • Simonov AV, Pshenichnikova TA, Lapochkina IF (2009) Genetic analysis of the traits introgressed from Aegilops speltoides Tausch to bread wheat and determined by chromosome 5A genes. Russ J Genet 45:799–804

    Article  CAS  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fikus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sood S, Kuraparthy V, Bai G, Gill BS (2009) The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor Appl Genet 119:341–351

    Article  PubMed  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N (1994) Near-isogenic lines of durum wheat: their development and plant characteristics. Euphytica 72:143–147

    Google Scholar 

  • Watanabe N, Yotani Y, Furuta Y (1996) The inheritance and chromosomal location of a gene for long glume in durum wheat. Euphytica 90:235–239

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. M. S. Röder, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany and Dr. A. Torada, Hokkaido Green-Bio Institute, Naganuma, Hokkaido, Japan for providing unpublished primer sequences of microsatellite markers. We acknowledge Dr. O. P. Mitrofanova, Vavilov Institute of Plant Industry, St. Petersburg, Russia and Dr. S. F. Koval, Institute of Cytology and Genetics, Novosibirsk, Russia for seeds of Cp-M808(Vrn1) and ANK-38, and the technical assistance by Miss A. Takayama. We thank Emeritus Professor M. Muramatsu, Okayama University, Okayama, Japan and Dr. Julie Hayes, Australian Centre for Plant Functional Genomics, The University of Adelaide, Glen Osmond, Australia for helpful comments on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosuge, K., Watanabe, N., Melnik, V.M. et al. New sources of compact spike morphology determined by the genes on chromosome 5A in hexaploid wheat. Genet Resour Crop Evol 59, 1115–1124 (2012). https://doi.org/10.1007/s10722-011-9747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-011-9747-9

Keywords

Navigation