Skip to main content
Log in

An assessment of the genetic diversity within a collection ofSaccharum spontaneum L. with RAPD-PCR

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A local collection of 33Saccharum spontaneum L. clones and two sugarcane cultivars (LCP 82-89 and LCP 85-384) were assessed for genetic variability using random amplified polymorphic DNA (RAPD)-PCR. A total of 157 polymorphic RAPD-PCR bands were scored with 17 primers. The number of RAPD-PCR products per primer ranged from four to 16. The data were analyzed with two multivariate analysis software programs, NTSYSpc and DNAMAN®. Although these two programs yielded similar results, a bootstrapped phylogenetic tree could only be generated with the DNAMAN® software. A substantial degree of genetic diversity was found within the localS. spontaneum collection. Pairwise genetic homology coefficients ranged from 65% (SES, 196/Tainan 2n = 96) to 88.5% (IND 81-80/IND 81-144). LCP 82-89 and LCP 85-384 shared a greater similarity (82%) than either was to any clone ofS. spontaneum (ranging from 60.5 to 75.2%). The 33S. spontaneum clones were assigned to eight groups independent of their geographic origin or morphology, while the two sugarcane cultivars were assigned to the ninth group. All but two pairs ofS. spontaneum clones could be distinguished by a single RAPD primer OPBB-02. The use of a second primer, either OPBE-04 or Primer 262, separated allS. spontaneum clones. One amplification product from the RAPD primer OPA-11, OPA-11-336, proved to be cultivar-specific and has been adopted for use in our breeding program. Information from this study would help conserve the genetic diversity ofS. spontaneum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arceneaux G. 1967. Cultivated sugarcanes of the world and their botanical derivation. Proc 12th Intl. Soc. Sugar Cane Technol., pp. 844–854.

  • Artschwager E. and Brandes E.W. 1958. Sugarcane (Saccharum officinarum L.): Origin, classification, characteristics and descriptions of representative clones. USDA Handbook No. 122.

  • Besse P., McIntyre C.L. and Berding B.N. 1997. Characterisation ofErianthus sect.Ripidium andSaccharum germplasm (Andropogoneae-Saccharinae) using RFLP markers. Euphytica 93: 283–292.

    Article  CAS  Google Scholar 

  • Besse P., Taylor G., Carroll B., Berding N., Burner D.M. and McIntyre C.L. 1998. Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Brandes E.W. 1958. Origin, classification and characteristics. In: Artschwager E. and Brandes E.W. (eds), Sugarcane (Saccharum officinarum L.), U.S. Dept. Agric. Handbook 122: 1–35, 260–262.

    Google Scholar 

  • Burner D.M. and Legendre B.L. 1993. Sugarcane genome amplification for the subtropics: a 20-year effort. Sugar Cane 3: 5–10.

    Google Scholar 

  • Burner D.M., Pan Y.-B. and Webster R.D. 1997. Genetic diversity of North American and Old WorldSaccharum assessed by RAPD analysis. Genet. Resour. Crop Evol. 44: 235–240.

    Article  Google Scholar 

  • Chu T.L., Juang P.Y. and Shang K.C. 1962. The wild cane (S. spontaneum) in Taiwan. Reporter Taiwan Expt. Station 28: 1–11.

    Google Scholar 

  • Daniels J. and Roach B.T. 1987. Taxonomy and evolution. In: Heinz D.J. (ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 7–84.

    Google Scholar 

  • Dunckelman P.H. and Breaux R.D. 1969. Agronomic characteristics ofSaccharum spontaneum in culture in Houma, Louisiana. Intl. Sugar J. 71: 333–334.

    Google Scholar 

  • Dunckelman P.H. and Legendre B.L. 1982. Guide To Sugarcane Breeding in the Temperate Zone. USDA-ARS, ARM-S-22, New Orleans.

    Google Scholar 

  • Feng D.F. and Doolittle R.F. 1987. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol. 25: 351–360.

    CAS  PubMed  Google Scholar 

  • Fritsch P., Hanson M.A., Spore C.D., Pack P.E. and Rieseberg L.H. 1993. Constancy of RAPD primer amplification strength among distantly related taxa of flowering plants. Plant Mol. Biol. Rep. 11: 10–20.

    CAS  Google Scholar 

  • Grassl C.O. 1946.Saccharum robustum and other wild relatives of ‘noble’ sugar canes. J. Arnold Arbor. 27: 234–252.

    Google Scholar 

  • Grassl C.O. 1969.Saccharum names and their interpretation. Proc. Intl. Soc. Sugar Cane Technol. 13: 868–875.

    Google Scholar 

  • Harvey M. and Botha F.C. 1996. Use of PCR-based methodologies for the determination of DNA diversity betweenSaccharum varieties. Euphytica 89: 257–265.

    Article  CAS  Google Scholar 

  • Harvey M., Huckett B.I. and Botha F.C. 1994. Use of polymerase chain reaction (PCR) and random amplification of polymorphic DNAs (RAPDs) for the determination of genetic distances between 21 sugarcane varieties. Proc. S. Afr. Sugar Technol. Assn. 68: 36–40.

    Google Scholar 

  • Huckett B.I. and Botha F.C. 1995. Stability and potential use of RAPD markers in a sugarcane genealogy. Euphytica 86: 117–125.

    Article  CAS  Google Scholar 

  • Jannoo N., Grivet L., Seguin M., Paulet F., Domaingue R., Rao P.S., Dookun A., D’Hont A. and Glaszmann J.C. 1999. Molecular investigation of the genetic base of sugarcane cultivars. Theor. Appl. Genet. 99: 171–184.

    Article  CAS  Google Scholar 

  • Kandasami P.A., Sreenivasan T.V., Palanichami K. and Ramana Rao T.C. 1983. Sugarcane germplasm: classification of clones. Sugar Cane 2: 1–3.

    Google Scholar 

  • Linnaeus C. 1753. Species plantarum, vol. 2, Stockholm. In: 1959 Facsimile Edition, Ray Society, London.

    Google Scholar 

  • Linnaeus C. 1771. Mantissa plantarum altera. Stockholm. In: 1961 Facsimile Edition, J. Cramer, Weinheim, p. 183.

    Google Scholar 

  • Legendre B.L. and Breaux R.D. 1983. The USDA basic sugarcane breeding program in Louisiana. Proc. Inter-Amer. Sugar Cane Sem.: Varieties and Breeding III: 96–98.

    Google Scholar 

  • Lu Y.H., D’Hont A., Paulet F., Grivet L., Arnaud M. and Glaszmann J.C. 1994. Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78: 217–226.

    Article  Google Scholar 

  • Lu Y.H., D’Hont A., Walker D.I.T., Rao P.S., Feldmann P. and Glaszmann J.C. 1994. Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78: 7–18.

    Article  Google Scholar 

  • Martin F.A., Bischoff K.P., Dufrene E.O., Milligan S.B., Quebedeaux J.P., Hoy J.W., Reagan T.E., Giamalva M.J., Miller J.D., Breaux R.D. and Legendre B.L. 1992. Registration of ‘LCP 82-89’ sugarcane. Crop Sci. 32: 499.

    Article  Google Scholar 

  • McIntyre L. and Jackson P. 1995. Does selfing occur in sugarcane? Plant Genome IV Conference. P165.

  • Milligan S.B., Martin F.A., Bischoff K.P., Quebedeaux J.P., Dufrene E.O., Quebedeaux K.L., Hoy J.W., Reagan T.E., Legendre B.L. and Miller J.D. 1994. Registration of ‘LCP 85-384’ sugarcane. Crop Sci. 34: 819–820.

    Article  Google Scholar 

  • Ming R., Liu S.-C., Lin Y.-R., da Silva J., Wilson W., Braga D., van Deynze A., Wenslaff T.F., Wu K.K., Moore P.H., Burnquist W., Sorrels M.E., Irvine J.E. and Paterson A.H. 1998. Detailed alignment ofSaccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150: 1663–1682.

    CAS  PubMed  Google Scholar 

  • Msomi N. and Botha F.C. 1994. Identification of molecular markers linked to fibre using bulk segregant analysis. Proc. S. Afr. Sugar Technol. Assn. 68: 41–45.

    Google Scholar 

  • Mudge J., Andersen W.R., Kehrer R.L. and Fairbanks D.J. 1996. A RAPD genetic map ofSaccharum officinarum. Crop Sci. 36: 1362–1366.

    Article  CAS  Google Scholar 

  • Nagatomi S. and Ohshiro Y. 1983. Classification of sugarcane wild germplasm by methods of numerical taxonomy. Proc. Intl. Sugar Cane Technol. 18: 650–660.

    Google Scholar 

  • Pan Y.-B., Burner D.M., Ehrlich K.C., Grisham M.P. and Wei Q. 1997. Analysis of primer-derived, non-specific amplification products in RAPD-PCR. BioTechniques 22: 1071–1077.

    CAS  PubMed  Google Scholar 

  • Pan Y.-B., Burner D.M. and Legendre B.L. 2000. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetica 108: 285–295.

    Article  CAS  PubMed  Google Scholar 

  • Pan Y.-B., Cordeiro G., Henry R. and Schnell R.J. 2003. Microsatellite fingerprints of Louisiana sugarcane varieties and breeding lines. Plant and Animal Genome X Conference. W153.

  • Paran I. and Michelmore R.W. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985–993.

    Article  CAS  Google Scholar 

  • Pillay M. and Kenny S.T. 1995. Anomalies in direct pair-wise comparisons of RAPD fragments for genetic analysis. Biotechniques 19: 694–698.

    CAS  PubMed  Google Scholar 

  • Rao J.T. and Vijayalakshmi U. 1963. World catalogue of sugarcane genetic stock. Sugarcane Breeding Institute (ICAR), Coimbatore, India, pp. 1–77.

    Google Scholar 

  • Roxburgh W. 1819. Plants of the Coast of Coromandel, vol. 3, Bulmer, London, pp. 26–27.

    Google Scholar 

  • Saitou N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Sills G.R., Bridges W., Aljanabi S.M. and Sobral B.W.S. 1995. Genetic analysis of agronomic traits in cross between sugarcane (Saccharum officinarurn L.) and its presumed progenitor (S. robustum Brandes and Jesw. ex Grassl). Mol. Breed. 1: 355–363.

    Article  CAS  Google Scholar 

  • Sobral B.W.S. and Honeycutt R.J. 1993. High output genetic mapping of polyploids using generated markers. Theor. Appl. Genet. 86: 105–112.

    Article  CAS  Google Scholar 

  • Sreenivasan T.V., Ahloowalia B.S. and Heinz D.J. 1987. Cytogenetics. In: Heinz D.J. (ed.), Sugarcane Improvement Through Breeding. Elsevier, New York, pp. 211–253.

    Google Scholar 

  • Tai P.Y.P., Miller J.D. and Legendre B.L. 1995. Evaluation of the world collection ofSaccharum spontaneum. Proc. Intl. Soc Sugar Cane Technol. 21: 250–260.

    Google Scholar 

  • Tao Y., Manners J.M., Ludlow M.M. and Henzell R.G. 1993. DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 86: 679–688.

    Article  CAS  Google Scholar 

  • Tew T.L. 1987. New varieties. In: Heinz D.J. (ed.), Sugarcane Improvement Through Breeding, Elsevier, New York, pp. 559–594.

    Google Scholar 

  • Tew T.L. 2004. World sugarcane variety census - Year 2000. Sugar Cane Intl. March/April 2004, pp. 12–18.

  • Thompson J.D., Higgins D.G. and Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acid Res. 22(22): 4673–4680.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Disclaimer: Product names and trademarks are mentioned to report on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA does not imply the approval of the product to the exclusion of others that may also be suitable. The experiments reported comply with the current laws of the USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Y.B., Burner, D.M., Legendre, B.L. et al. An assessment of the genetic diversity within a collection ofSaccharum spontaneum L. with RAPD-PCR. Genet Resour Crop Evol 51, 895–903 (2005). https://doi.org/10.1007/s10722-005-1933-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-005-1933-1

Key words

Navigation