Skip to main content

Advertisement

Log in

Spatial and Spectral Representations of the Geoid-to-Quasigeoid Correction

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

In geodesy, the geoid and the quasigeoid are used as a reference surface for heights. Despite some similarities between these two concepts, the differences between the geoid and the quasigeoid (i.e. the geoid-to-quasigeoid correction) have to be taken into consideration in some specific applications which require a high accuracy. Over the world’s oceans and marginal seas, the quasigeoid and the geoid are identical. Over the continents, however, the geoid-to-quasigeoid correction could reach up to several metres especially in the mountainous, polar and geologically complex regions. Various methods have been developed and applied to compute this correction regionally in the spatial domain using detailed gravity, terrain and crustal density data. These methods utilize the gravimetric forward modelling of the topographic density structure and the direct/inverse solutions to the boundary-value problems in physical geodesy. In this article, we provide a brief summary of existing theoretical and numerical studies on the geoid-to-quasigeoid correction. We then compare these methods with the newly developed procedure and discuss some numerical and practical aspects of computing this correction. In global applications, the geoid-to-quasigeoid correction can conveniently be computed in the spectral domain. For this purpose, we derive and present also the spectral expressions for computing this correction based on applying methods for a spherical harmonic analysis and synthesis of global gravity, terrain and crustal structure models. We argue that the newly developed procedure for the regional gravity-to-potential conversion, applied for computing the geoid-to-quasigeoid correction in the spatial domain, is numerically more stable than the existing inverse models which utilize the gravity downward continuation. Moreover, compared to existing spectral expressions, our definition in the spectral domain takes not only the terrain geometry but also the mass density heterogeneities within the whole Earth into consideration. In this way, the geoid-to-quasigeoid correction and the respective geoid model could be determined more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Airy GB (1855) On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Phil Trans Roy Soc (Lond) B 145:101–104

    Article  Google Scholar 

  • Allister NA, Featherstone WE (2001) Estimation of Helmert orthometric heights using digital barcode levelling, observed gravity and topographic mass-density data over part of Darling Scarp, Western Australia. Geom Res Aust 75:25–52

    Google Scholar 

  • Ardalan AA, Grafarend EW (1999) A first test for W0 the time variation of W0 based on three GPS campaigns of the Baltic Sea level project, final results of the Baltic Sea Level 1997 GPS campaign. Rep Finnish Geod Inst 99(4):93–112

    Google Scholar 

  • Årgen J (2004) The analytical continuation bias in geoid determination using potential coefficients and terrestrial gravity data. J Geod 78:314–332

    Article  Google Scholar 

  • Artemjev ME, Kaban MK, Kucherinenko VA, Demjanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of the Northern Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonoph 240:248–280

    Google Scholar 

  • Bagherbandi M, Tenzer R (2013) Geoid-to-quasigeoid separation computed using the GRACE/GOCE global geopotential model GOCO02S—a case study of Himalayas, Tibet and central Siberia. Terr Atmo Ocean Sci 24(1):59–68

    Article  Google Scholar 

  • Bruns H (1878) Die Figur der Erde. Publ Preuss Geod Inst, Berlin

    Google Scholar 

  • Burke KF, True SA, Burša M, Raděj K (1996) Accuracy estimates of geopotential models and global geoids. In: Rapp RH, Cazenave AA, Nerem RS (eds) Proceedings of symposium no 116 held in Boulder, CO, USA, July 12, 1995. Springer, Berlin, pp 50–60

    Google Scholar 

  • Burša M, Radej K, Šíma Z, True SA, Vatrt V (1997) Determination of the geopotential scale factor from TOPEX/POSEIDON satellite altimetry. Stud Geoph Geod 41:203–216

    Article  Google Scholar 

  • Burša M, Kouba J, Kumar M, Müller A, Radej K, True SA, Vatrt V, Vojtíšková M (1999) Geoidal geopotential and world height system. Stud Geoph Geod 43:327–337

    Article  Google Scholar 

  • Burša M, Kouba J, Müller A, Raděj K, True SA, Vatrt V, Vojtíšková M (2001) Determination of geopotential differences between local vertical datums and realization of a World Height System. Stud Geoph Geod 45:127–132

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, Šíma Z, Vatrt V, Vítek V, Vojtíšková M (2007) The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81(2):103–110

    Article  Google Scholar 

  • Dayoub N, Edwards SJ, Moore P (2012) The Gauss-Listing geopotential value W0 and its rate from altimetric mean sea level and GRACE. J Geod 86(9):681–694

    Article  Google Scholar 

  • Dennis ML, Featherstone WE (2003) Evaluation of orthometric and related height systems using a simulated mountain gravity field. In: Tziavos IN (ed) Gravity and geoid 2002. Aristotle Univ Thessaloniki, Dept Surv Geod, Thessaloniki, pp 389–394

    Google Scholar 

  • Drewes H, Dodson AH, Fortes LP, Sanchez L, Sandoval P (eds) (2002) Vertical reference systems. IAG symposia 24. Springer, Berlin, p 353

    Google Scholar 

  • Featherstone WE (2013) Deterministic, stochastic, hybrid and band-limited modifications of Hotine’s integral. J Geod 87(5):487–500

    Article  Google Scholar 

  • Featherstone WE, Kuhn M (2006) Height systems and vertical datums: a review in the Australian context. J Spatial Sci 51(1):21–42

    Article  Google Scholar 

  • Filmer MS, Featherstone WE, Kuhn M (2010) The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network. J Geod 84(8):501–513

    Article  Google Scholar 

  • Flury J, Rummel R (2009) On the geoid-quasigeoid separation in mountain areas. J Geod 83:829–847

    Article  Google Scholar 

  • Goiginger H, Rieser D, Mayer-Guerr T, Pail R, Schuh W.-D., Jäggi A, Maier A (2011) GOCO, consortium: the combined satellite-only global gravity field model GOCO02S. European Geosciences Union General Assembly 2011, Vienna

  • Grafarend EW, Ardalan AA (1997) W0: an estimate of the Finnish Height Datum N60, epoch 1993.4 from twenty-five GPS points of the Baltic Sea level project. J Geod 71(11):673–679

  • Heiskanen WH, Moritz H (1967) Physical geodesy. WH Freeman and Co, San Francisco

    Google Scholar 

  • Helmert FR (1884) Die mathematischen und physikalischen Theorien der höheren Geodäsie, vol 2. Teubner, Leipzig

    Google Scholar 

  • Helmert FR (1890) Die Schwerkraft im Hochgebirge, insbesondere in den Tyroler Alpen. Veröff Königl Preuss Geod Inst, no 1

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Hirt C (2012) Efficient and accurate high-degree spherical harmonic synthesis of gravity field functionals at the Earth’s surface using the gradient approach. J Geod 86(9):729–744

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy, 2nd edn. Springer, Berlin

    Google Scholar 

  • Huang J, Vaníček P, Pagiatakis SD, Brink W (2001) Effect of topographical density on the geoid in the Rocky Mountains. J Geod 74:805–815

    Article  Google Scholar 

  • Hwang C, Hsiao YS (2003) Orthometric height corrections from leveling, gravity, density and elevation data: a case study in Taiwan. J Geod 77(5–6):292–302

    Google Scholar 

  • Kao SP, Rongshin H, Ning FS (2000) Results of field test for computing orthometric correction based on measured gravity. Geom Res Aust 72:43–60

    Google Scholar 

  • Kingdon R, Vaníček P, Santos M (2009) Modeling topographical density for geoid determination. Can J Earth Sci 46(8):571–585

    Article  Google Scholar 

  • Krakiwsky EJ (1965) Heights, MS thesis. Dept Geod Sci Surv, Ohio State Univ, Columbus, p 157

  • Ledersteger K (1955) Der Schwereverlauf in den Lotlinien und die Berechnung der wahren Geoidschwere. Publication dedicated to Heiskanen WA, Publ Finn Geod Inst, No 46, pp 109-124

  • Ledersteger K (1968) Astronomische und Physikalische Geodäsie (Erdmessung). In: Jordan W, Eggert E, Kneissl M (eds) Handbuch der Vermessungskunde, vol V. Metzler, Stuttgart

    Google Scholar 

  • Mader K (1954) Die orthometrische Schwerekorrektion des Präzisions-Nivellements in den Hohen Tauern. Österreichische Zeitschrift für Vermessungswesen, Sonderheft 15

    Google Scholar 

  • Marti U (2005) Comparison of high precision geoid models in Switzerland. In: Tregonig P, Rizos C (eds) Dynamic planet. Springer, Berlin

    Google Scholar 

  • Martinec Z (1998) Boundary value problems for gravimetric determination of a precise geoid. Lecture notes in earth sciences, vol 73. Springer, Berlin

  • Meyer TH, Roman DR, Zilkoski DB (2007) What does height really mean? Part IV: GPS orthometric heighting. Department of Natural Resources and the Environment Articles, paper 5

  • Molodensky MS (1945) Fundamental Problems of Geodetic Gravimetry (in Russian). TRUDY Ts NIIGAIK, 42, Geodezizdat, Moscow

  • Molodensky MS (1948) External gravity field and the shape of the Earth surface (in Russian). Izv CCCP, Moscow

    Google Scholar 

  • Molodensky MS, Yeremeev VF, Yurkina MI (1960) Methods for study of the external gravitational field and figure of the earth. TRUDY Ts NIIGAiK, vol 131. Geodezizdat, Moscow. English translation: Israel Program for Scientific Translation, Jerusalem 1962

  • Moritz H (1990) Advanced physical geodesy. Abacus Press, Tunbridge Wells

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–162

    Article  Google Scholar 

  • Niethammer T (1932) Nivellement und Schwere als Mittel zur Berechnung wahrer Meereshöhen. Schweizerische Geodätische Kommission

  • Niethammer T (1939) Das astronomische Nivellement im Meridian des St Gotthard, Part II, Die berechneten Geoiderhebungen und der Verlauf des Geoidschnittes. Astronomisch-Geodätische Arbeiten in der Schweiz, vol 20. Swiss Geodetic Commission

  • Novák P (2003) Geoid determination using one-step integration. J Geod 77:193–206

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406

    Google Scholar 

  • Pizzetti P (1911) Sopra il calcolo teorico delle deviazioni del geoide dall` ellissoide. Atti R Accad Sci Torino 46:331–350

    Google Scholar 

  • Pratt JH (1855) On the attraction of the Himalaya Mountains and of the elevated regions beyond upon the plumb-line in India, Trans Roy Soc (Lond). B 145:53–100

    Google Scholar 

  • Rapp RH (1961) The orthometric height. M.S. Thesis, Dept Geod Sci, Ohio State Univ, Columbus, USA, p 117

  • Rapp RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J Geod 71(5):282–289

    Article  Google Scholar 

  • Sanchez L (2007) Definition and realisation of the SIRGAS vertical reference system within a globally unified height system. In: Tregoing P, Rizos C (eds) Dynamic planet: monitoring and understanding a dynamic planet with geodetic and oceanographic tools, IAG Symposia, vol 130, pp 638–645

  • Santos MC, Vaníček P, Featherstone WE, Kingdon R, Ellmann A, Martin B-A, Kuhn M, Tenzer R (2006) The relation between rigorous and Helmert’s definitions of orthometric heights. J Geod 80:691–704

    Article  Google Scholar 

  • Sjöberg LE (1995) On the quasigeoid to geoid separation. Manuscr Geod 20(3):182–192

    Google Scholar 

  • Sjöberg LE (2006) A refined conversion from normal height to orthometric height. Stud Geophys Geod 50:595–606

    Article  Google Scholar 

  • Sjöberg LE (2007) The topographical bias by analytical continuation in physical geodesy. J Geod 81:345–350

    Article  Google Scholar 

  • Sjöberg LE (2010) A strict formula for geoid-to-quasigeoid separation. J Geod 84:699–702

    Article  Google Scholar 

  • Sjöberg LE (2012) The geoid-to-quasigeoid difference using an arbitrary gravity reduction model. Stud Geophys Geod 56:929–933

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2012) Quasigeoid-to-geoid determination by EGM08. Earth Sci Inform 5:87–91

    Article  Google Scholar 

  • Somigliana C (1929) Teoria Generale del Campo Gravitazionale dell’Ellisoide di Rotazione. Milano, Memoire della Societa Astronomica Italiana, p 425

    Google Scholar 

  • Strange WE (1982) An evaluation of orthometric height accuracy using borehole gravimetry. Bull Géod 56:300–311

    Article  Google Scholar 

  • Sünkel H (1986) Digital height and density model and its use for the orthometric height and gravity field determination for Austria. In: Proceedings of the international symposium on the definition of the geoid, Florence, Italy, May, pp 599–604

  • Sünkel H, Bartelme N, Fuchs H, Hanafy M, Schuh WD, Wieser M (1987) The gravity field in Austria. In: Austrian Geodetic Commission (ed) The gravity field in Austria. Geodätische Arbeiten Österreichs für die Intenationale Erdmessung, Neue Folge, vol IV, pp 47–75

  • Tenzer R (2004) Discussion of mean gravity along the plumbline. Stud Geoph Geod 48:309–330

    Article  Google Scholar 

  • Tenzer R, Novák P (2008) Conditionality of inverse solutions to discretized integral equations in geoid modelling from local gravity data. Stud Geoph Geod 52:53–70

    Article  Google Scholar 

  • Tenzer R, Vaníček P (2003) Correction to Helmert’s orthometric height due to actual lateral variation of topographical density. Rev Brasil Cartogr 55(02):44–47

    Google Scholar 

  • Tenzer R, Vaníček P, Santos M, Featherstone WE, Kuhn M (2005) The rigorous determination of orthometric heights. J Geod 79(1–3):82–92

    Article  Google Scholar 

  • Tenzer R, Moore P, Novák P, Kuhn M, Vaníček P (2006) Explicit formula for the geoid-to-quasigeoid separation. Stud Geoph Geod 50:607–618

    Article  Google Scholar 

  • Tenzer R, Vatrt V, Abdalla A, Dayoub N (2011a) Assessment of the LVD offsets for the normal-orthometric heights and different permanent tide systems—a case study of New Zealand. Appl Geomat 3(1):1–8

    Article  Google Scholar 

  • Tenzer R, Vatrt V, Luzi G, Abdalla A, Dayoub N (2011b) Combined approach for the unification of levelling networks in New Zealand. J Geod Sci 1(4):324–332

    Google Scholar 

  • Tenzer R, Sirguey P, Rattenbury M, Nicolson J (2011c) A digital bedrock density map of New Zealand. Comput Geosci 37(8):1181–1191

    Article  Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207

    Article  Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839

    Article  Google Scholar 

  • Tziavos IN, Featherstone WE (2001) First results of using digital density data in gravimetric geoid computation in Australia. In: Sideris MG (ed) Gravity, geoid and geodynamics 2000. Springer, Berlin, pp 335–340

    Chapter  Google Scholar 

  • Vaníček P, Kingdon (2012) Geoid versus quasigeoid: A case of physics vs geometry. Contrib Geophys Geod 42(1):101–118

    Google Scholar 

  • Vaníček P, Kleusberg A, Martinec Z, Sun W, Ong P, Najafi M, Vajda P, Harrie L, Tomášek P, Horst B (1995) Compilation of a precise regional geoid. Final report on research done for the Geodetic Survey Division, Fredericton

    Google Scholar 

  • Vaníček P, Tenzer R, Sjöberg LE, Martinec Z, Featherstone WE (2005) New views of the spherical Bouguer gravity anomaly. Geophys J Int 159:460–472

    Article  Google Scholar 

  • Vermeer M (2008) Comment on Sjöberg (2006) “The topographic bias by analytical continuation in physical geodesy”. J Geod 81(5):345–350. J Geod 82:445–450

    Article  Google Scholar 

  • Wirth B (1990) Höhensysteme, Schwerepotentiale und Niveauflächen. Geodätisch-Geophysikalische Arbeiten in der Schweiz, vol 42. Swiss Geodetic Commission

Download references

Acknowledgments

This research was supported by the National Program of Sustainability, Project No.: LO1506, Czech Ministry of Education, Youth and Sport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Appendices

Appendix 1: Potential (of Reference Topographic Density) for External Convergence Domain

To find the spectral representation of the Newton volumetric integral in Eq. (17) for the external convergence domain, we define the fundamental harmonic function \(\ell^{ - 1}\) by (e.g., Heiskanen and Moritz 1967, Eqs. 1–81)

$$\ell^{ - 1} \left( {r,\psi ,r^{\prime}} \right) = \frac{1}{r}\sum\limits_{n = 0}^{\infty } {\left( {\frac{{r^{\prime}}}{r}} \right)^{n} P_{n} \left( t \right)} \quad \left( {r \ge r^{\prime}} \right),$$
(54)

where \({\text{P}}_{\text{n}}\) is the Legendre polynomial of degree n, and t = cos ψ. Inserting Eq. (54) in Eq. (17), the topographic potential \(V_{\text{e}}^{{{\text{T}},\bar{\rho }^{\text{T}} }}\) for the external convergence domain r ≥ r′ becomes

$$V_{\text{e}}^{{{\text{T}},\bar{\rho }^{\text{T}} }} \left( {r,\varOmega } \right) = G\bar{\rho }^{\text{T}} r\sum\limits_{n = 0}^{\infty } {{\iint\limits_{\phi }} {P_{n} \left( t \right)\int_{{r^{\prime} = R}}^{{R + H^{\prime}}} {\left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2} } {\text{d}}r^{\prime}{\text{d}}}\varOmega^{\prime}} .$$
(55)

The radial integral in Eq. (55) is further rearranged into the form

$$\int_{{r^{\prime} = R}}^{{R + H^{\prime}}} {\left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2} } {\text{d}}r^{\prime} = \int_{{r^{\prime} = R}}^{{R + H^{\prime}}} {\left( {\frac{R}{r}} \right)^{n + 2} \left( {1 + \eta } \right)^{n + 2} } {\text{d}}r^{\prime}\quad \left( {n = 0, 1, \ldots } \right),$$
(56)

where \(\eta = \left( {r^{\prime} - R} \right)/R.\) Applying a binomial theorem to (1 + η)n+2, we get

$$\left( {1 + \eta } \right)^{n + 2} \, \cong \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \left( {\frac{{r^{\prime} - R}}{R}} \right)^{k} \quad \left( {n = 0, 1, \ldots } \right).$$
(57)

Substituting Eq. (57) in Eq. (56) yields

$$\int_{{r^{\prime} = R}}^{{R + H^{\prime}}} {\left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2} } {\text{d}}r^{\prime} \cong \int_{{r^{\prime} = R}}^{{R + H^{\prime}}} {\left( {\frac{R}{r}} \right)^{n + 2} \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \left( {\frac{{r^{\prime} - R}}{R}} \right)^{k} } {\text{d}}r^{\prime}\quad \left( {n = 0, 1, \ldots } \right).$$
(58)

Solving the radial integral in Eq. (58) and inserting for the integral limits, we arrive at

$$\begin{aligned} & \int_{{r^{\prime} = R}}^{{R + H^{\prime}}} {\left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2}} {\text{d}}r^{\prime} \cong {\left( {\frac{R}{r}} \right)^{n + 2}\sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{l} {n + 2} \\ k \\ \end{array} }\right)} \frac{1}{{R^{k}}}\frac{{\left( {r^{\prime}-R} \right)^{k + 1} }}{k + 1}} |_{{r^{\prime} = R}}^{{R + H^{\prime}}} \\&\quad = R\left( {\frac{R}{r}} \right)^{n + 2}\sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{l} {n + 2} \\k \\ \end{array} } \right)} \left( {\frac{{H^{\prime}}}{R}} \right)^{k + 1} \frac{1}{k + 1}\quad \left( n = 0, 1, \ldots\right), \\\end{aligned}$$
(59)

where \(H^{\prime} = r^{\prime} - R\). Substituting Eq. (59) in Eq. (55), the spectral form of \(V_{\text{e}}^{{{{{\rm T},\rho }}^{\text{T}} }}\) becomes

$$\begin{aligned} V_{e}^{{{\text{T}},\bar{\rho }^{\text{T}} }} \left( {r,\varOmega } \right) & \cong G\bar{\rho }^{\text{T}} R^{2} \sum\limits_{n = 0}^{\infty } {\left( {\frac{R}{r}} \right)^{n + 1} } \\ & \quad \times \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{l} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{{R^{k + 1} }}\frac{1}{k + 1}{\iint\limits_{\phi }} {H^{{{\prime }k + 1}} P_{n} \left( t \right){\text{d}}\varOmega^{\prime}} \\ \end{aligned}$$
(60)

Since the expansion of \(V_{\text{e}}^{{{\text{T}},\bar{\rho }^{\text{T}} }}\) into a series of spherical functions converges uniformly for the external convergence domain \(r \ge R\), the interchange of summation and integration in Eq. (60) was permitted (cf. Moritz 1990). We note here that the same spectral form of Newton’s integral for the external convergence domain as derived in Eq. (61) can be found by changing the order of applying the radial integration and binomial theorem (cf. Årgen 2004; Vermeer 2008).

The Laplace harmonics \(H_{n}\) of the topographic heights in Eq. (61) are defined by the following integral convolution

$$H\left( \varOmega \right) = \sum\limits_{n = 0}^{\infty } {H_{n} \left( \varOmega \right)} ,H_{n} \left( \varOmega \right) = \frac{2n + 1}{4\pi }{\iint\limits_{\phi} } {H^{\prime}P_{n} \left( t \right){\text{d}}}\varOmega^{\prime} = \sum\limits_{m = - n}^{n} {H_{n,m} Y_{n,m} \left( \varOmega \right)} ,$$
(61)

where \(H_{n,m}\) are the topographic height coefficients. The corresponding higher-order harmonics \(\{ H_{n}^{\left( k \right)} :k = 2,3, \ldots \}\) read

$$\begin{aligned} & H_{n}^{\left( k \right)} \left( \varOmega \right) = \frac{2n + 1}{4\pi }{\iint\limits_{\phi }} {H^{{{\prime }k}} P_{n} \left( t \right){\text{d}}}\varOmega^{\prime} \\ & \quad = \sum\limits_{m = - n}^{n} {H_{n,m}^{\left( k \right)} Y_{n,m} \left( \varOmega \right)} . \\ \end{aligned}$$
(62)

Substituting Eqs. (61) and (62) in Eq. (60), the topographic potential \(V_{\text{e}}^{{{\text{T}},\bar{\rho }^{\text{T}} }}\) is obtained in the following spectral form

$$\begin{aligned} & V_{e}^{{T,\bar{\rho }^{\rm T} }} \left( {r,\varOmega } \right) = 4\pi G\bar{\rho }^{\rm T} R^{2} \sum\limits_{n = 0}^{\infty } {\left( {\frac{R}{r}} \right)^{n + 1} \frac{1}{2n + 1}} \\ & \quad \times \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{{R^{k + 1} }}\frac{1}{k + 1}\sum\limits_{m = - n}^{n} {H_{n,m}^{{\left( {k + 1} \right)}} Y_{n,m} \left( \varOmega \right)} . \\ \end{aligned}$$
(63)

Appendix 2: Potential (of Anomalous Mass Density Contrast Layer) for External Convergence Domain

To find the spectral expression of the gravitational potential \(V_{\text{e}}^{\delta \rho }\) (of anomalous mass density contrast layer) for the external convergence domain, we first substitute the density contrast model from Eq. (46) to Newton’s integral in Eq. (18). After limiting the integration domain to the volumetric mass layer, the gravitational potential V δρ becomes

$$\begin{aligned} V^{\delta \rho } \left( {r,\varOmega } \right) & \cong G{\iint\limits_{\phi }} {\delta \rho \left( {H^{\prime}_{U} ,\varOmega^{\prime}} \right)\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\ell^{ - 1} \left( {r,\psi ,r^{\prime}} \right)} r^{{{\prime }2}} {\text{d}}r^{\prime}{\text{d}}}\varOmega^{\prime} \\ & \quad + G{\iint\limits_{\phi }} {\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\beta \left( {\varOmega^{\prime}} \right)\sum\limits_{i = 1}^{I} {\alpha_{i} \left( {\varOmega^{\prime}} \right)\left( {r^{\prime} - R} \right)^{i} } \ell^{ - 1} \left( {r,\psi ,r^{\prime}} \right)} r^{{{\prime }2}} {\text{d}}r^{\prime}{\text{d}}}\varOmega^{\prime}. \\ \end{aligned}$$
(64)

We note that the parameters H U , H L and ρ(H U , Ω) become \(H_{U}^{\prime } ,H_{L}^{\prime }\) and \(\rho \left( {H_{U}^{\prime } ,\varOmega^{\prime } } \right)\) when used for volumetric integration on the right-hand side of Eq. (64), because the position of integration point is described by the coordinates (r′, Ω′).

We further define the spectral form of \(V_{\text{e}}^{\delta \rho }\) in Eq. (64) for the external convergence domain. Inserting from Eq. (54) to Eq. (64), we get

$$\begin{aligned} V_{e}^{\delta \rho } \left( {r,\varOmega } \right) & \cong Gr\sum\limits_{n = 0}^{\infty } {\iint\limits_{\phi } {\delta \rho \left( {H^{\prime}_{U} ,\varOmega^{\prime}} \right)P_{n} \left( t \right)\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2} } {\text{d}}r^{\prime}{\text{d}}}\varOmega^{\prime}} \\ & \quad + Gr\sum\limits_{n = 0}^{\infty } {\iint\limits_{\phi } {\beta \left( {\varOmega^{\prime}} \right)\sum\limits_{i = 1}^{I} {\alpha_{i} \left( {\varOmega^{\prime}} \right)} P_{n} \left( t \right)\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {r^{\prime} - R} \right)^{i} } \left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2} {\text{d}}r^{\prime}{\text{d}}}\varOmega^{\prime}} . \\ \end{aligned}$$
(65)

The solution of the radial integral in the first constituent on the right-hand side of Eq. (65) yields

$$\begin{aligned} & \int_{{r^{\prime} = R + H_{L}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2} } {\text{d}}r^{\prime} = \left( {\frac{R}{r}} \right)^{n + 2} \int_{{r^{\prime} = R + H_{L}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\left( {1 + \frac{{r^{\prime} - R}}{R}} \right)^{n + 2} } {\text{d}}r^{\prime} \\ & \quad \cong \left( {\frac{R}{r}} \right)^{n + 2} \int_{{r^{\prime} = R + H_{L}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \left( {\frac{{r^{\prime} - R}}{R}} \right)^{k} } {\text{d}}r^{\prime} \\ & \quad = \left. {\left( {\frac{R}{r}} \right)^{n + 2} \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{{R^{k} }}\frac{{\left( {r^{\prime} - R} \right)^{k + 1} }}{k + 1}} \right|_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H_{U}^{{\prime }} }} \\ & \quad = \left( {\frac{R}{r}} \right)^{n + 2} \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{{R^{k} }}\frac{{H_{U}^{{{\prime }k + 1}} - H_{L}^{{{\prime }k + 1}} }}{k + 1}\quad \left( {n = 0, 1, \ldots } \right). \\ \end{aligned}$$
(66)

Similarly, the solution of the radial integral in the second constituent on the right-hand side of Eq. (65) is found to be

$$\begin{aligned} & \int_{{r^{\prime} = R + H_{L}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\left( {r^{\prime} - R} \right)^{i} } \left( {\frac{{r^{\prime}}}{r}} \right)^{n + 2} {\text{d}}r^{\prime} = \left( {\frac{R}{r}} \right)^{n + 2} \int_{{r^{\prime} = R + H_{L}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\left( {r^{\prime} - R} \right)^{i} } \left( {1 + \frac{{r^{\prime} - R}}{R}} \right)^{n + 2} {\text{d}}r^{\prime} \\ & \quad \cong \left( {\frac{R}{r}} \right)^{n + 2} \int_{{r^{\prime} = R + H_{L}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{{\left( {r^{\prime} - R} \right)^{k + i} }}{{R^{k} }}} {\text{d}}r^{\prime} \\ & \quad = \left( {\frac{R}{r}} \right)^{n + 2} \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{{R^{k} }}\frac{{H_{U}^{{{\prime }k + i + 1}} - H_{L}^{{{\prime }k + i + 1}} }}{k + 1 + i}\quad \left( {n = 0, 1, \ldots ; i = 1, 2, \ldots , I} \right). \\ \end{aligned}$$
(67)

Inserting from Eqs. (66) and (67) to Eq. (65), we get

$$\begin{aligned} V_{e}^{\delta \rho } \left( {r,\varOmega } \right) & \cong GR\sum\limits_{n = 0}^{\infty } {\left( {\frac{R}{r}} \right)^{n + 1} \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{{R^{k} }}\frac{1}{k + 1}} \\ & \quad \times {\iint\limits_{\phi }} {\delta \rho \left( {H^{\prime}_{U} ,\dot{\varOmega }^{\prime}} \right)\left( {H_{U}^{{{\prime }k + i + 1}} - H_{L}^{{{\prime }k + i + 1}} } \right)P_{n} \left( t \right){\text{d}}}\varOmega^{\prime} \\ & \quad + GR\sum\limits_{n = 0}^{\infty } {\left( {\frac{R}{r}} \right)^{n + 1} } \sum\limits_{i = 1}^{I} {\sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} } \frac{1}{{R^{k} }}\frac{1}{k + 1 + i} \\ & \quad \times {\iint\limits_{\phi}} {\beta \left( {\varOmega^{\prime}} \right)\alpha_{i} \left( {\varOmega^{\prime}} \right)\left( {H_{U}^{{{\prime }k + i + 1}} - H_{L}^{{{\prime }k + i + 1}} } \right)P_{n} \left( t \right){\text{d}}}\varOmega^{\prime}. \\ \end{aligned}$$
(68)

Tenzer et al. (2012a, b) defined the spherical lower-bound and upper-bound functions \({{L}}_{{n}}\) and \({{U}}_{{n}}\) of a volumetric mass density contrast layer and their higher-order terms in the following form

$$L_{n}^{{\left( {k + 1 + i} \right)}} \left( \varOmega \right) = \left\{ {\begin{array}{l}\begin{aligned} & {\frac{2n + 1}{4\pi }{\iint\limits_{\phi } }{\delta \rho \left( {H^{\prime}_{U} ,\dot{\varOmega }^{\prime}} \right)H_{L}^{k + 1} \left( {\varOmega^{\prime}} \right)P_{n} \left( t \right)d\varOmega^{\prime}}} \\ & = \sum\limits_{m = - n}^{n} {L_{n,m}^{{\left( {k + 1} \right)}} Y_{n,m} \left( \varOmega \right)}\quad i = 0 \\ & \frac{2n + 1}{4\pi }{\iint\limits_{\phi }} {\beta \left( {\varOmega^{\prime}} \right)\alpha_{i} \left( {\varOmega^{\prime}} \right)H_{L}^{k + 1 + i} \left( {\varOmega^{\prime}} \right)P_{n} \left( t \right)d\varOmega^{\prime}} \\ &= \sum\limits_{m = - n}^{n} {L_{n,m}^{{\left( {k + 1 + i} \right)}} Y_{n,m} \left( \varOmega \right)\quad i = 1,2, \ldots ,I} \hfill \\ \end{aligned} \\ \end{array} } \right.$$
(69)

and

$$U_{n}^{{\left( {k + 1 + i} \right)}} \left( \varOmega \right) = \left\{ {\begin{array}{l}\begin{aligned} & {\frac{2n + 1}{4\pi }{\iint\limits_{\phi } }{\delta \rho \left( {H^{\prime}_{U} ,\varOmega^{\prime}} \right)H_{U}^{k + 1} \left( {\varOmega^{\prime}} \right)P_{n} \left( t \right){\text{d}}\varOmega^{\prime}}} \\ &= \sum\limits_{m = - n}^{n} {U_{n,m}^{{\left( {k + 1} \right)}} Y_{n,m} \left( \varOmega \right)\quad i = 0} \\& \frac{2n + 1}{4\pi }{\iint\limits_{\phi }} {\beta \left( {\varOmega^{\prime}} \right)\alpha_{i} \left( {\varOmega^{\prime}} \right)H_{U}^{k + 1 + i} \left( {\varOmega^{\prime}} \right)P_{n} \left( t \right){\text{d}}\varOmega^{\prime}} \\ & = \sum\limits_{m = - n}^{n} {U_{n,m}^{{\left( {k + 1 + i} \right)}} Y_{n,m} \left( \varOmega \right)\quad i = 1,2, \ldots ,I} \end{aligned} \end{array} } \right.$$
(70)

Substituting Eqs. (69) and (70) in Eq. (68) and considering the series expansion up to the maximum degree of \(\bar{n}\), we arrive at

$$V_{e}^{\delta \rho } \left( {r,\varOmega } \right) = \frac{\text{GM}}{R}\sum\limits_{n = 0}^{{\bar{n}}} {\left( {\frac{R}{r}} \right)^{n + 1} \sum\limits_{m = - n}^{n} {{e}V_{n,m}^{\delta \rho } Y_{n,m} \left( \varOmega \right)} } ,$$
(71)

where the potential coefficients \({\text{e}}V_{n,m}^{\delta \rho }\) read

$${e}V_{n,m}^{\delta \rho } = \frac{3}{2n + 1}\frac{1}{{\bar{\rho }^{\text{Earth}} }}\sum\limits_{i = 0}^{I} {({}_{e}Fu_{n,m}^{(i)} - {}_{e}Fl_{n,m}^{(i)} )} .$$
(72)

The numerical coefficients { \({}_{\text{e}}{\text{Fl}}_{n,m}^{(i)} ,{}_{\text{e}}{\text{Fu}}_{n,m}^{(i)} :i = 0,1, \ldots ,I\) } in Eq. (65) are given by

$${}_{\text{e}}{\text{Fl}}_{n,m}^{(i)} = \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{k + 1 + i}\frac{{L_{n,m}^{{\left( {k + 1 + i} \right)}} }}{{R^{k + 1} }}\quad \left( {i = 0, 1, \ldots , I} \right),$$
(73)

and

$${}_{\text{e}}{\text{Fu}}_{n,m}^{(i)} = \sum\limits_{k = 0}^{n + 2} {\left( {\begin{array}{*{20}c} {n + 2} \\ k \\ \end{array} } \right)} \frac{1}{k + 1 + i}\frac{{U_{n,m}^{{\left( {k + 1 + i} \right)}} }}{{R^{k + 1} }}\quad \left( {i = 0, 1, \ldots , I} \right).$$
(74)

Appendix 3: Potential (of Anomalous Mass Density Contrast Layer) for Internal Convergence Domain

We apply a similar procedure as used in “Appendix 2” to derive the spectral expression of the potential \(V_{i}^{\delta \rho }\) (of anomalous mass density contrast layer) for the internal convergence domain. For this purpose, we define the fundamental harmonic function \(\ell^{ - 1}\) in Eq. (54) for the internal convergence domain r < r′ as follows

$$\ell^{ - 1} \left( {r,\psi ,r^{\prime}} \right) = \frac{1}{{r^{\prime}}}\sum\limits_{n = 0}^{\infty } {\left( {\frac{r}{{r^{\prime}}}} \right)^{n} P_{n} \left( t \right)} \quad \left( {r < r^{\prime}} \right).$$
(75)

The substitution from Eq. (75) to Eq. (64) yields

$$\begin{aligned} & \mathop {\lim }\limits_{{r \to R^{ - } }} V_{i}^{\delta \rho } \left( {r,\varOmega } \right) = GR\sum\limits_{n = 0}^{\infty } {\iint\limits_{\phi } {\delta \rho \left( {H^{\prime}_{U} ,\varOmega^{\prime}} \right)P_{n} \left( t \right)\int_{{r^{\prime} = R + H_{L}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} } {\text{d}}r^{\prime}{\text{d}}}\varOmega^{\prime}} \\ & \quad + GR\sum\limits_{n = 0}^{\infty } {\iint\limits_{\phi } {\beta \left( {\varOmega^{\prime}} \right)\sum\limits_{i = 1}^{I} {\alpha_{i} \left( {\varOmega^{\prime}} \right)} P_{n} \left( t \right)\int_{{r^{\prime} = R + H_{U}^{{\prime }} }}^{{R + H_{U}^{{\prime }} }} {\left( {r^{\prime} - R} \right)^{i} } \left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} {\text{d}}r^{\prime}{\text{d}}}\varOmega^{\prime}} . \\ \end{aligned}$$
(76)

We further rearrange the radial integral in the first constituent on the right-hand side of Eq. (76) into the following form

$$\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} } {\text{d}}r^{\prime} = \int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {\frac{{r^{\prime}}}{R}} \right)^{1 - n} } {\text{d}}r^{\prime} = \int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {1 + \eta } \right)^{1 - n} } {\text{d}}r^{\prime}\quad \left( {n = 0, 1, \ldots } \right),$$
(77)

and apply a binomial theorem to (1 + η)1−n. Hence

$$\left( {1 + \eta } \right)^{1 - n} \cong \sum\limits_{k = 0}^{\infty } {\left( {\begin{array}{*{20}c} {1 - n} \\ k \\ \end{array} } \right)} \left( {\frac{{r^{\prime} - R}}{R}} \right)^{k} = \sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \left( {\frac{{r^{\prime} - R}}{R}} \right)^{k} \quad \left( {n = 0, 1, \ldots } \right).$$
(78)

Inserting from Eq. (78) to Eq. (77), we get

$$\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} } {\text{d}}r^{\prime} \cong \sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {\frac{{r^{\prime} - R}}{R}} \right)^{k} } {\text{d}}r^{\prime}\quad \left( {n = 0, 1, \ldots } \right).$$
(79)

The solution of the radial integral in Eq. (79) reads

$$\begin{aligned} & \int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} } {\text{d}}r^{\prime} \cong \sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \left. {\frac{1}{{R^{k} }}\frac{{\left( {r^{\prime} - R} \right)^{k + 1} }}{k + 1}} \right|_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} \\ & \quad = R\sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \left( {\frac{{H^{\prime}_{U} - H^{\prime}_{L} }}{R}} \right)^{k + 1} \frac{1}{k + 1}\quad \left( {n = 0, 1, \ldots } \right). \\ \end{aligned}$$
(80)

By analogy with Eq. (79), we rewrite the radial integral in the second term on the right-hand side of Eq. (76) as follows

$$\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {r^{\prime} - R} \right)^{i} } \left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} {\text{d}}r^{\prime} = \int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {r^{\prime} - R} \right)^{i} \left( {1 + \eta } \right)^{1 - n} } {\text{d}}r^{\prime}\quad \left( {n = 0, 1, \ldots ; \;i = 1, 2, \ldots , I} \right).$$
(81)

The substitution for (1 + η)1−n from Eq. (78) to Eq. (81) yields

$$\int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {r^{\prime} - R} \right)^{i} } \left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} {\text{d}}r^{\prime} \cong R^{i} \sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {\frac{{r^{\prime} - R}}{R}} \right)^{k + i} } {\text{d}}r^{\prime}\quad \left( {n = 0,1, \ldots ;\;i = 1,2, \ldots ,I} \right).$$
(82)

The solution of the radial integral in Eq. (82) is then found to be

$$\begin{aligned} & \int_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} {\left( {r^{\prime} - R} \right)^{i} \left( {\frac{R}{{r^{\prime}}}} \right)^{n - 1} } {\text{d}}r^{\prime} \cong \left. {\sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \frac{1}{{R^{k} }}\frac{{\left( {r^{\prime} - R} \right)^{k + i + 1} }}{k + 1 + i}} \right|_{{r^{\prime} = R + H^{\prime}_{L} }}^{{R + H^{\prime}_{U} }} \\ & \quad = R^{i + 1} \sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \left( {\frac{{H^{\prime}_{U} - H^{\prime}_{L} }}{R}} \right)^{k + i + 1} \frac{1}{k + 1 + i} \\ & \quad \left( {n = 0, 1, \ldots ;\; i = 1, 2, \ldots , I} \right). \\ \end{aligned}$$
(83)

Substituting from Eqs. (80) and (83) to Eq. (76) and limiting the series expansion up to the maximum degree \(\bar{n}\), we arrive at

$$\mathop {\lim }\limits_{{r \to R^{ - } }} V_{i}^{\delta \rho } \left( {r,\varOmega } \right) = \frac{\text{GM}}{R}\sum\limits_{n = 0}^{{\bar{n}}} {\sum\limits_{m = - n}^{n} {{}_{i}V_{n,m}^{\delta \rho } Y_{n,m} \left( \varOmega \right)} } ,$$
(84)

where the potential coefficients \({}_{\text{i}}V_{n,m}^{\delta \rho }\) are given by

$${}_{\text{i}}V_{n,m}^{\delta \rho } = \frac{3}{2n + 1}\frac{1}{{\bar{\rho }^{\text{Earth}} }}\sum\limits_{i = 0}^{I} {\left( {{}_{i}Fu_{n,m}^{(i)} - {}_{i}Fl_{n,m}^{(i)} } \right)} .$$
(85)

The numerical coefficients { \({}_{\text{i}}{\text{Fl}}_{n,m}^{(i)} ,{}_{i}Fu_{n,m}^{(i)} :i = 0,1, \ldots ,I\) } in Eq. (86) read

$${}_{\text{i}}Fl_{n,m}^{(i)} = \sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \frac{1}{k + 1 + i}\frac{{L_{n,m}^{{\left( {k + 1 + i} \right)}} }}{{R^{k + 1} }}\left( {i = 0, 1, \ldots , I} \right),$$
(86)

and

$${}_{i}{\text{Fu}}_{n,m}^{(i)} = \sum\limits_{k = 0}^{\infty } {\left( { - 1} \right)^{k} \left( {\begin{array}{*{20}c} {n + k - 2} \\ k \\ \end{array} } \right)} \frac{1}{k + 1 + i}\frac{{U_{n,m}^{{\left( {k + 1 + i} \right)}} }}{{R^{k + 1} }}\quad \left( {i = 0, 1, \ldots , I} \right).$$
(87)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenzer, R., Hirt, C., Claessens, S. et al. Spatial and Spectral Representations of the Geoid-to-Quasigeoid Correction. Surv Geophys 36, 627–658 (2015). https://doi.org/10.1007/s10712-015-9337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9337-z

Keywords

Navigation