Skip to main content
Log in

The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

An Erratum to this article was published on 07 November 2013

Abstract

This paper investigates the normal-orthometric correction used in the definition of the Australian Height Datum, and also computes and evaluates normal and Helmert orthometric corrections for the Australian National Levelling Network (ANLN). Testing these corrections in Australia is important to establish which height system is most appropriate for any new Australian vertical datum. An approximate approach to assigning gravity values to ANLN benchmarks (BMs) is used, where the EGM2008-modelled gravity field is used to ‘re-construct’ observed gravity at the BMs. Network loop closures (for first- and second-order levelling) indicate reduced misclosures for all height corrections considered, particularly in the mountainous regions of south eastern Australia. Differences between Helmert orthometric and normal-orthometric heights reach 44 cm in the Australian Alps, and differences between Helmert orthometric and normal heights are about 26 cm in the same region. Normal-orthometric heights differ from normal heights by up to 18 cm in mountainous regions >2,000 m. This indicates that the quasigeoid is not compatible with normal-orthometric heights in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allister NA, Featherstone WE (2001) Estimation of Helmert orthometric heights using digital barcode levelling, observed gravity and topographic mass-density data over part of the Darling Scarp, Western Australia. Geomat Res Australas 75: 25–52

    Google Scholar 

  • Amos MJ, Featherstone WE (2009) Unification of New Zealands local vertical datums: iterative gravimetric quasigeoid computations. J Geodesy 83(1): 57–68. doi:10.1007/s00190-008-0232-y

    Article  Google Scholar 

  • Angus-Leppan PV (1984) Refraction in geodetic levelling. In: Brunner F (eds) Geodetic refraction. Springer, Berlin, pp 163–180

    Google Scholar 

  • Bomford G (1980) Geodesy, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Claessens SJ, Featherstone WE, Anjasmara IM, Filmer MS (2008) Is Australian data really validating EGM2008, or is EGM2008 just in/validating Australian data? Newton’s Bull 4: 207–251

    Google Scholar 

  • Coleman RC, Rizos C, Masters E, Hirsch B (1979) The investigation of the sea surface slope along the north eastern coast of Australia. Aust J Geodesy Photogramm Surv 31: 686–699

    Google Scholar 

  • Craymer M, Vaníc̆ek P (1986) Further analysis of the 1981 Southern California field test for levelling refraction. J Geophys Res 91(B9): 9045–9055

    Article  Google Scholar 

  • Entin I (1959) Main systematic errors in precise levelling. Bull Géodésique 33(2): 37–45. doi:10.1007/BF02526861

    Article  Google Scholar 

  • Featherstone WE (1995) On the use of Australian geodetic datums in gravity field determination. Geomat Res Australas 62: 17–36

    Google Scholar 

  • Featherstone WE (1998) Do we need a gravimetric geoid or a model of the Australian Height Datum to transform GPS heights. Aust Surv 43(4): 273–280

    Google Scholar 

  • Featherstone WE (2000) Towards unification of the Australian Height Datum between the Australian mainland and Tasmania using GPS and the AUSGeoid98 geoid model. Geomat Res Australas 73: 33–54

    Google Scholar 

  • Featherstone WE (2001) Prospects for the Australian Height Datum and geoid model. In: Adam J, Schwarz K-P (eds) Vistas for geodesy in the new millennium. Springer, Berlin, pp 96–101

    Google Scholar 

  • Featherstone WE (2008) GNSS-based heighting in Australia: current, emerging and future issues. J Spatial Sci 53(2): 115–134

    Google Scholar 

  • Featherstone WE, Kirby JF (1998) Estimates of the separation between the geoid and the quasigeoid over Australia. Geomat Res Australas 68: 79–90

    Google Scholar 

  • Featherstone WE, Kirby JF (2000) The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophys J Int 141(1): 204–212. doi:10.1046/j.1365-246X.2000.00082.x

    Article  Google Scholar 

  • Featherstone WE, Kuhn M (2006) Height systems and vertical datums: a review in the Australian context. J Spatial Sci 51(1): 21–42

    Google Scholar 

  • Featherstone WE, Sproule DM (2006) Fitting AUSGeoid98 to the Australian Height Datum using GPS data and least squares collocation: application of a cross validation technique. Surv Rev 38(301): 573–582

    Google Scholar 

  • Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geodesy 75(5–6): 313–330. doi:10.1007/s001900100177

    Article  Google Scholar 

  • Filmer MS, Featherstone WE (2009) Detecting spirit-levelling errors in the AHD: recent findings and some issues for any new Australian height datum. Aust J Earth Sci 56(4): 559–569. doi:10.1080/08120090902806305

    Article  Google Scholar 

  • Flury J, Rummel R (2009) On the geoid-quasigeoid separation in mountain areas. J Geodesy 83(9): 829–847. doi:10.1007/s00190-009-0302-9

    Article  Google Scholar 

  • Hackney RI, Featherstone WE (2006) Corrigendum to “Geodetic versus geophysical perspectives of the ‘gravity anomaly”’. Geophys J Int 167(6): 585

    Google Scholar 

  • Hamon BV, Greig MA (1972) Mean sea level in relation to geodetic land levelling around Australia. J Geophys Res 77(36): 7157– 7162

    Article  Google Scholar 

  • Heck B (1995) Rechenverfahren und Auswertemodelle der Landesvermessung. Herbert Wichmann Verlag, Heidelberg

    Google Scholar 

  • Helmert FR (1890) Die Schwerkraft im Hochgebirge, Insbesondere in den Tyroler Alpen. Veröffentlichung des Königlichen Preussischen Geodätischen Institutes

  • Heiskanen WA, Moritz H (1967) Physical Geodesy. Freeman, San Fransisco

    Google Scholar 

  • Holmes SA, Pavlis NK (2008) A Fortran program for very-high-degree harmonic synthesis. Technical report for harmonic_synth version 05/01/2006. National Geospatial-Intelligence Agency, Greenbelt

  • Holloway R (1988) The integration of GPS heights into the Australian Height Datum. UNISURV Report S-33. University of New South Wales, Sydney

  • Hwang C, Hsiao Y-S (2003) Orthometric corrections from levelling, gravity, density and elevation data: a case study in Taiwan. J Geodesy 77(5–6): 279–291. doi:10.1007/s00190-003-0325-6

    Article  Google Scholar 

  • ICSM (2007) Standards and practices for control surveys V1.7. Inter-Governmental Committee on Surveying and Mapping. ICSM Publication No. 1. http://www.icsm.gov.au/icsm/publications/sp1/sp1v1-7.pdf

  • International Association of Geodesy (1971) Geodetic Reference System 1967. Special Publication No. 3. Bulletin Géodésique, Paris

  • Jekeli C (2000) Heights, the geopotential and vertical datums. Report No. 459. The Ohio State University, Columbus http://www.geology.osu.edu/jekeli.1/OSUReports/reports/report_459.pdf

  • Kao S-P, Hsu R, Ning F-S (2000) Results of field test for computing orthometric correction based on measured gravity. Geomat Res Australas 72: 43–60

    Google Scholar 

  • Kearsley AHW, Ahmad Z, Chan A (1993) National height datums, levelling, GPS heights and geoids. Aust J Geodesy Photogramm Surv 59: 53–88

    Google Scholar 

  • Mader K (1954) Die orthometrische Schwerekorrektion des Präzisions Nivellements in den Hohen Tauern. Österreichische Zeitschrift für Vermessungswesen, Sonderheft 15

  • Marti U, Schlatter A (2002) The new height system in Switzerland. In: Drewes H, Dodson AH, Fortes LPS, Sánchez L, Sandoval P (eds) Vertical reference systems 2001. Springer, Berlin, pp 50–55

    Google Scholar 

  • Mitchell HL (1973a) An Australian geopotential network based on observed gravity. UNISURV Report G18:32-50. University of New South Wales, Sydney

  • Mitchell HL (1973b) Relations between mean sea level and geodetic levelling in Australia. UNISURV Report S-9. University of New South Wales, Sydney

  • Molodensky M, Yeremeyev V, Yurkina M (1962) Methods for study of the external gravitational field and figure of the Earth. Israeli Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Morgan P (1992) An analysis of the Australian Height Datum: 1971. Aust Surv 37(1): 46–63

    Google Scholar 

  • Moritz H (1980) Geodetic reference system 1980. Bull Géodésique 54(3): 395–405. doi:10.1007/BF02521480

    Article  Google Scholar 

  • Neithammer T (1932) Nivellement und Schwere als Mittel zur Berechnung wahrer Meereshöhen. Schweizerische Geodätische Kommission, Bern

    Google Scholar 

  • NMC (1986) The Australian Geodetic Datum technical manual. Special Publication 10. National Mapping Council of Australia, Canberra

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008. Presented at EGU-2008, Vienna, Austria, April 13–18. http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/index.html

  • Ramsayer K (1959) Report about gravity reduction of the levelling network in Baden-Württemberg (summary). Bull Gèodèsique 33(2): 76–79. doi:10.1007/BF02526868

    Article  Google Scholar 

  • Rapp RH (1961) The orthometric height. MS Dissertation. The Ohio State University, Columbus

  • Rizos C, Coleman R, Ananga N (1991) The Bass Strait GPS survey: preliminary results of an experiment to connect Australian height datums. Aust J Geodesy Photogramm Surv 55: 1–25

    Google Scholar 

  • Roelse A Granger HW, Graham JW (1971, 2nd edn. 1975) The adjustment of the Australian levelling survey 1970–1971. Technical Report 12. Division of National Mapping, Canberra

  • Rüeger JM (1997) Staff errors in and the adjustment of ordinary levelling runs. Aust Surv 42(1): 16–24

    Google Scholar 

  • Soltanpour A, Nahavandchi H, Featherstone WE (2006) The use of second-generation wavelets to combine a gravimetric quasigeoid model with GPS-levelling data. J Geodesy 80(2): 82–93. doi:10.1007/s00190-006-0033-0

    Article  Google Scholar 

  • Sproule DM, Featherstone WE, Kirby JF (2006) Localised gross-error detection in the Australian land gravity database. Explor Geophys 37(2): 175–179

    Article  Google Scholar 

  • Strang van Hees GL (1992) Practical formulas for the computation of the orthometric, dynamic and normal heights. Zeitschrift für Vermessungswesen 117(11): 727–734

    Google Scholar 

  • Strange W (1982) The evaluation of orthometric height accuracy using bore hole gravimetry. Bull Géodésique 56(4): 300–311. doi:10.1007/BF02525730

    Article  Google Scholar 

  • Tenzer R, Vaníc̆ek P, Santos M, Featherstone WE, Kuhn M (2005) Rigorous determination of the orthometric height. J Geodesy 79(1–3): 82–92. doi:10.1007/s00190-005-0445-2

    Article  Google Scholar 

  • Vaníc̆ek P, Krakiwsky E (1982) Geodesy: the concepts. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Ziebart MK, Illife JC, Forsberg R, Strykowski G (2008) Convergence of the UK OSGM05 GRACE-based geoid and the UK fundamental benchmark network. J Geophys Res 113: B12401

    Article  Google Scholar 

  • Zilkoski DB, Richards JH, Young GM (1992) Results of the general adjustment of the North American Vertical Datum of 1988. Surv Land Inform Syst 52: 133–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Filmer.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00190-013-0666-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filmer, M.S., Featherstone, W.E. & Kuhn, M. The effect of EGM2008-based normal, normal-orthometric and Helmert orthometric height systems on the Australian levelling network. J Geod 84, 501–513 (2010). https://doi.org/10.1007/s00190-010-0388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0388-0

Keywords

Navigation