Skip to main content
Log in

Conditionality of inverse solutions to discretised integral equations in geoid modelling from local gravity data

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The eigenvalue decomposition technique is used for analysis of conditionality of two alternative solutions for a determination of the geoid from local gravity data. The first solution is based on the standard two-step approach utilising the inverse of the Abel-Poisson integral equation (downward continuation) and consequently the Stokes/Hotine integration (gravity inversion). The second solution is based on a single integral that combines the downward continuation and the gravity inversion in one integral equation. Extreme eigenvalues and corresponding condition numbers of matrix operators are investigated to compare the stability of inverse problems of the above-mentioned computational models. To preserve a dominantly diagonal structure of the matrices for inverse solutions, the horizontal positions of the parameterised solution on the geoid and of data points are identical. The numerical experiments using real data reveal that the direct gravity inversion is numerically more stable than the downward continuation procedure in the two-step approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts B. and Klees R., 2004. A comparison of methods for the inversion of airborne gravity data. J. Geodesy, 78, 55–65.

    Article  Google Scholar 

  • Arfken G., 1985. Mathematical Methods for Physicists, 3rd Edition. Academic Press, Orlando.

    Google Scholar 

  • Bjerhammar A., 1962. Gravity Reductions to a Spherical Surface. Royal Institute of Technology, Division of Geodesy, Stockholm.

    Google Scholar 

  • Bjerhammar A., 1963. A New Theory of Gravimetric Geodesy. Royal Institute of Technology, Division of Geodesy, Stockholm.

    Google Scholar 

  • Bjerhammar A., 1987. Discrete Physical Geodesy. Report 380, Dept. of Geodetic Science and Surveying, The Ohio State University, Columbus.

    Google Scholar 

  • Engels H., Grafarend E., Keller W., Martinec Z., Sansò F. and Vaníček P., 1993. The geoid as an inverse problem to be regularized. In: G. Anger, R. Gorenflo, H. Jochmann, H. Moritz and W. Webers (Eds.), Inverse Problems: Principles and Applications in Geophysics, Technology and Medicine. Akademie-Verlag, Berlin, 122–167.

    Google Scholar 

  • Hageman L. and Young D., 1981. Applied Iterative Methods. New York, Academic Press.

    Google Scholar 

  • Hobson E.W., 1931. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ilk K.H., 1993. Regularization for high resolution gravity field recovery by future satellite techniques. In: G. Anger, R. Gorenflo, H. Jochmann, H. Moritz and W. Webers (Eds.), Inverse Problems: Principles and Applications in Geophysics, Technology and Medicine. Akademie-Verlag, Berlin, 189–214.

    Google Scholar 

  • Kellogg O.D., 1929. Foundations of Potential Theory. Springer, Berlin.

    Google Scholar 

  • Lavrentiev M.M., Romanov V.G. and Shishatskii S.P., 1986. Ill-Posed Problems of Mathematical Physics and Analysis. Translated by J.R. Schulenberger, Translations of Mathematical Monographs, 64, American Mathematical Society, Providence, R. I., 1986, ISBN 0-2818-4517-9.

    Google Scholar 

  • Martinec Z., 1996. Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. J. Geodesy, 70, 805–828.

    Google Scholar 

  • Martinec Z., 1998. Boundary value problems for gravimetric determination of a precise geoid. Lecture Notes in Earth Sciences, 73, Springer, Berlin and Heidelberg, Germany.

    Google Scholar 

  • Novák P., 2000. Evaluation of Gravity Data for the Stokes-Helmert Solution to the Geodetic Boundary-Value Problem. Technical Report 207, UNB, Fredericton, Canada.

    Google Scholar 

  • Novák P., 2003. Geoid determination using one-step integration. J. Geodesy, 77, 193–206.

    Article  Google Scholar 

  • Novák P., Kern M., Schwarz K.P., Sideris M.G., Heck B., Ferguson S., Hammada Y. and Wei M., 2003. On geoid determination from airborne gravity. J. Geodesy, 76, 510–522.

    Article  Google Scholar 

  • Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T., 1992. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd Edition. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Sideris M.G. and Forsberg R., 1991. Review of geoid prediction methods in mountainous regions. In: R.H. Rapp and F. Sansò (Eds.), Determination of the Geoid, Present and Future. IAG Symposia, 106, Springer-Verlag, Berlin and Heidelberg, 51–62.

    Google Scholar 

  • Tikhonov A.N., 1963. Regularization of incorrectly posed problems. Soviet Math. Dokl., 4(6), 1624–1627.

    Google Scholar 

  • Tikhonov A.N. and Arsenin V.Y., 1977. Solutions of Ill-Posed Problems. V.H. Vinston, Washington, D.C.

    Google Scholar 

  • Varga R.S., 1962. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Wilkinson J., 1965. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Young D., 1972. Iterative Solutions of Large Linear Systems. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tenzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenzer, R., Novák, P. Conditionality of inverse solutions to discretised integral equations in geoid modelling from local gravity data. Stud Geophys Geod 52, 53–70 (2008). https://doi.org/10.1007/s11200-008-0005-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-008-0005-3

Keywords

Navigation