Skip to main content
Log in

Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We analyze here the presence and abundance of three types of transposable elements (TEs), i.e. Gypsy, RTE and Mariner, in the genome of the grasshopper Eyprepocnemis plorans. PCR experiments allowed amplification, cloning and sequencing of these elements (EploGypI, EploRTE5, EploMar20) from the E. plorans genome. Fluorescent in situ hybridization (FISH) showed that all three elements are restricted to euchromatic regions, thus being absent from the pericentromeric region of all A chromosomes, which contain a satellite DNA (satDNA) and ribosomal DNA (rDNA), and being very scarce in B chromosomes mostly made up of these two types of repetitive DNA. FISH suggested that EploGypI is the most abundant and EploMar20 is the least abundant, with EploRTE5 showing intermediate abundance. An estimation of copy number, by means of quantitative PCR, showed that EploGypI is, by far, the most abundant element, followed by EploRTE5 and EploMar20, in consistency with FISH results. RNA isolation and PCR experiments on complementary DNA (cDNA) showed the presence of transcripts for the three TE elements. The implications of the preferential location of these TE elements into euchromatin, the significance of TE abundance in the giant genome of this species, and a possible relationship between TEs and B chromosome mutability, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker RJ, Kass DH (1994) Comparison of chromosomal distribution of a retrotransposon (LINE) and a retrovirus-like element mys in Peromyscus maniculatus and P. leucopus. Chromosom Res 2:185–189

    Article  CAS  Google Scholar 

  • Bakkali M, Camacho JPM (2004) The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa: III mutation rate of B chromosomes. Heredity 92:428–433

    Article  PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2001) Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosom Res 9:129–136

    Article  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated to genes of both monocotyledonous abs dicotyledonous plants. Plant Cell 6:907–916

    PubMed  CAS  Google Scholar 

  • Burke WD, Eickbush DG, Xiong Y, Jakubczak J, Eickbush TH (1993) Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol 10:163–185

    PubMed  CAS  Google Scholar 

  • Cabrero J, López-León MD, Bakkali M, Camacho JPM (1999) Common origin of B chromosomes variants in the grasshopper Eyprepocnemis plorans. Heredity 83:435–439

    Article  PubMed  Google Scholar 

  • Cabrero J, Bugrov A, Warchałowska-Sliwa E, López-León MD, Perfectti F, Camacho JPM (2003a) Comparative FISH analysis in five species of Eyprepocnemidine grasshoppers. Heredity 90:377–381

    Article  PubMed  CAS  Google Scholar 

  • Cabrero J, Perfectti F, Gómez R, Camacho JPM, López-León MD (2003b) Population variation in the A chromosome distribution of satellite DNA and ribosomal DNA in the grasshopper Eyprepocnemis plorans. Chromosom Res 11:375–381

    Article  CAS  Google Scholar 

  • Camacho JPM (2005) B chromosomes. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 223–286

    Chapter  Google Scholar 

  • Camacho JPM, Cabrero J, Viseras E, López-León ND, Navas-Castillo J, Alché JD (1991) G banding in two species of grasshopper and its relationships to C, N and fluorescence banding techniques. Genome 34:638–643

    Article  Google Scholar 

  • Cermak T, Kubat Z, Hobza R et al (2008) Survey of repetitive sequences in Selene latifolia with respect to their distribution on sex chromosomes. Chromosom Res 16:961–976

    Article  CAS  Google Scholar 

  • Charles M, Belcram H, Just J, Huneau C, Viollet A, Couloux A et al (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Dimitri P, Jukanovic N, Arcà B (2003) Colonization of heterochromatic genes by transposable elements in Drosophila. Mol Biol Evol 20:503–512

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Zeng R, Chen J (2008) Accurate and efficient data processing for quantitative real-time PCR using a tripartite plant virus as a model. Biotechniques 44:901–912

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA Transposons and the evolution of eukaryotic Genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H, Osanai M, Matsumoto T, Kojima KK (2005) Telomere-specific non-LTR retrotransposon and telomere maintenance in the silkworm, Bombyx mori. Chromosom Res 13:455–467

    Article  CAS  Google Scholar 

  • Gao D, Gill N, Kim HR et al (2009) A lineage-specific centromere retrotransposon in Oryza brachyantha. Plant J 60:820–831

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotranposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Haberer G, Young S, Bharti AK, Gundlach H, Raymond C et al (2005) Structure and architecture of the Maiz genome. Plant Physiol 139:1612–1624

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Henriques-Gil N, Arana P (1990) Origin and substitution of B chromosomes in the grasshopper Eyprepocnemis plorans. Evolution 44:747–753

    Article  Google Scholar 

  • Hsieh J, Fire A (2000) Recognition and silencing of repeated DNA. Annu Rev Genet 34:187–204

    Article  PubMed  CAS  Google Scholar 

  • Jacobs G, Dechyeva D, Menzel G, Dombrowski C, Schmidt T (2004) Molecular characterization of Vulmar 1, a complete mariner transposon of sugar beet and diversity of mariner and En/Spm like sequences in the genus Beta. Genome 47:1192–1201

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAGI core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181

    Article  PubMed  Google Scholar 

  • Kasschau KD, Fahlgren N, Chapman EJ et al (2007) Genome-wide profiling and analysis of arabidopsis siRNA. PLoS Biol 5:e57

    Article  PubMed  Google Scholar 

  • Kazazian HH (1999) An estimated frequency of endogenous insertional mutations in humans. Nat Genet 22:130

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG (2005) Transposable elements. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 165–221

    Chapter  Google Scholar 

  • Kidwell MG, Lish D (1997) Transposable elements as sources of variation animals and plants. Proc Natl Acad Sci USA 94:7704–7711

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lish D (2000) Transposable elements and genome evolution. TREE 15:95–99

    PubMed  Google Scholar 

  • Lamb JC, Riddle NC, Cheng YM, Theuri J, Birchler JA (2007) Location and transcription of a retrotransposon-derived element on the maize B chromosome. Chromosom Res 15:383–398

    Article  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lipatov M, Lenko K, Petrov DA, Bergman CM (2005) Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome. BMC Biol 3:24

    Article  PubMed  Google Scholar 

  • López-León MD, Cabrero J, Pardo MC, Viseras E, Camacho JPM, Santos JL (1993) Generating high variability of B chromosomes in Eyprepocnemis plorans (grasshopper). Heredity 71:352–362

    Article  Google Scholar 

  • López-León MD, Neves N, Schwarzacher T, Heslop-Harrison JS, Hewitt GM, Camacho JPM (1994) Possible origin of B chromosome deduced from its DNA composition using double FISH technique. Chromosom Res 2:87–92

    Article  Google Scholar 

  • López-León MD, Vázquez P, Hewitt GM, Camacho JPM (1995) Cloning and sequence analysis of an extremely homogeneous tandemly repeated DNA in the grasshopper Eyprepocnemis plorans. Heredity 75:370–375

    Article  PubMed  Google Scholar 

  • Mariño-Ramírez L, Lewis KC, Landsman D, Jordan IK (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res 110:333–341

    Article  PubMed  Google Scholar 

  • Miller K, Lynch C, Martin J, Herniou E, Tristem M (1999) Identification of multiple Gypsy LTR-retrotransposon lineages in vertebrate genomes. J Mol Evol 49:358–366

    Article  PubMed  CAS  Google Scholar 

  • Mukabayire O, Besansky NJ (1996) Distribution of T1, Q, Pegasus and mariner transposable elements on the polytene chromosomes of PEST, a standard strain of Anopheles gambiae. Chromosoma 104:585–595

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-López M, Siddique A, Bischerour J et al (2008) Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon. J Mol Biol 382:567–572

    Article  PubMed  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML (1995) Drosophila telomeres: another way to end it all. In: Blackbum EH, Graider CW (eds) Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 339–370

    Google Scholar 

  • Paux ED, Roger D, Badaeva E, Gay G, Bernard M et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plan J 48:463–478

    Article  CAS  Google Scholar 

  • Rebuzzini P, Castiglia R, Nergadze G et al (2009) Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus. Chromosom Res 17:65–76

    Article  CAS  Google Scholar 

  • Rose T (2003) CODEHOP (COnsensus-DEgenerate hybrid oligonucleotide Primer) PCR primer design. Nucl Acids Res 31:3763–3766

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ruano FJ, Ruiz-Estévez M, Rodríguez-Pérez J, López-Pino JL, Cabrero J, Camacho JPM (2011) DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria. Cytogenet Genome Res 134:120–126

    Article  PubMed  CAS  Google Scholar 

  • Santiago M, Hérraiz C, Goñi JR, Messeguer X, Casacuberta JM (2002) Genome wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. Mol Biol Evol 19:2285–2293

    Article  PubMed  CAS  Google Scholar 

  • Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in Maize and Zea luxurians. Genome Biol Evol 3:219–229

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Torti C, Ludvik M, Gomulski M, Maralli D, Raimondi E, Robertson HM (2000) Evolution of different subfamilies of mariner elements within mdfly genome inferred from abundance and chromosomal distribution. Chromosoma 108:523–532

    Article  PubMed  CAS  Google Scholar 

  • Vicient C (2010) Transcriptional activity of transposable elements in maize. BMC Genom 11:601–610

    Article  Google Scholar 

  • Vieira C, Lepetit D, Dumont S, Biemont C (1999) Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol Biol Evol 16:1251–1255

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  PubMed  CAS  Google Scholar 

  • Wessler S, Bureau T, White SE (1995) LTR-retrotransposons and MITE: important players in the evolution of plant genomes. Curr Opin Gent Dev 5:814–821

    Article  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Zurita S, Cabrero J, López-León MD, Camacho JPM (1998) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52:274–277

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Spanish Ministerio de Ciencia e Innovación (CGL2009-11917) and Junta de Andalucía (CVI-6649), and was partially performed by FEDER funds. E. E. Montiel was supported by a Junta de Andalucía fellowship. We thank David Martinez for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mª Dolores López-León.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montiel, E.E., Cabrero, J., Camacho, J.P.M. et al. Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 140, 365–374 (2012). https://doi.org/10.1007/s10709-012-9686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-012-9686-1

Keywords

Navigation