Skip to main content
Log in

Distribution of T1, Q, Pegasus and mariner transposable elements on the polytene chromosomes of PEST, a standard strain of Anopheles gambiae

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The chromosomal locations of four families of transposable elements, T1, Q, Pegasus and mariner, have been determined by in situ hybridization to polytene chromosomes of ovarian nurse cells of the mosquito Anopheles gambiae. As part of this effort, we have developed a vigorous pink-eyed laboratory strain of A. gambiae (PEST), rendered homozygous standard for chromosomal inversions on all autosomes. Ten different individuals of this strain were studied with each transposable element probe. The average number of hybridization sites per genome was 83.9 for T1, 63.4 for Q, 31.5 for Pegasus and 64.7 for mariner, excluding pericentric and centromeric regions. However, some degree of polymorphism was observed within each family such that, considering all ten individuals, 94 different sites were detected for T1, 82 sites for Q, 45 sites for Pegasus and 71 sites for mariner. The mean occupancy per site varied from 0.70 (Pegasus) to 0.91 (mariner), which, while significantly higher than that seen for transposable elements in natural populations of Drosophila melanogaster, is comparable to that seen in established laboratory stocks. In addition, these element families were not randomly distributed. All but Pegasus were concentrated in centromeric heterochromatin and centromere-proximal euchromatin, most showed a deficit of hybridization sites in the distal section of chromosomes, and a significant proportion of sites were coincident between families. These results provide the first detailed examination of the cytogenetic location of transposable elements in a nondrosophilid insect, and, through comparison with the behavior of transposable elements in Drosophila, may provide insight into the interaction between elements and host. The mapped elements are also expected to serve as landmarks useful in integrating the developing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benedict MQ, Seawright JA, Anthony DW, Avery SW (1979) Ebony, a semidominant lethal mutant in the mosquito Anopheles albimanus. Can J Genet Cytol 21:193–200

    Google Scholar 

  • Benedict MQ, Besansky NJ, Chang H, Mukabayire O, Collins FH (1996) Mutations in the Anopheles gambiae pink-eye and white genes define distinct, tightly linked eye-color loci. J Heredity 87:48–53

    Google Scholar 

  • Berg DE, Howe MM (1989) Mobile DNA. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Besansky NJ (1990a) A retrotransposable element from the mosquito Anopheles gambiae. Mol Cell Biol 10:863–871

    Google Scholar 

  • Besansky NJ (1990b) Evolution of the T1 retroposon family in the Anopheles gambiae complex. Mol Biol Evol 7:229–246

    Google Scholar 

  • Besansky NJ, Powell JR (1992) Reassociation kinetics of Anopheles gambiae (Diptera: Culicidae) DNA. J Med Entomol 29: 125–128

    Google Scholar 

  • Besansky NJ, Paskewitz SM, Mills-Hamm D, Collins FH (1992) Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol Cell Biol 12:5102–5110

    Google Scholar 

  • Besansky NJ, Bedell JA, Mukabayire O (1994) Q: a new retrotransposon from the mosquito Anopheles gambiae. Insect Mol Biol 3:49–56

    Google Scholar 

  • Besansky NJ, Bedell JA, Benedict MQ, Mukabayire O, Hilfiker D, Collins FH (1995) Cloning and characterization of the white gene from Anopheles gambiae. Insect Mol Biol 4:217–231

    Google Scholar 

  • Besansky NJ, Mukabayire O, Bedell J, Lusz H (1996) Pegasus, a small terminal inverted repeat transposable element found in the white gene of Anopheles gambiae. Genetica (in press)

  • Biémont C (1986) Polymorphism of the Mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93:393–397

    Google Scholar 

  • Biémont C (1992) Population genetics of transposable DNA elements: a Drosophila point of view. Genetica 86:67–84

    Google Scholar 

  • Biémont C, Lemeunier F, Garcia Guerreiro MP, Brookfield JF, Gautier C, Aulard S, Pasyukova EG (1994) Population dynamics of the copia, mdg1, mdg3, gypsy, and P transposable elements in a natural population of Drosophila melanogaster. Genet Res 63:197–212

    Google Scholar 

  • Blackman RK, Gelbart WM (1989) The transposable element hobo of Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 523–529

    Google Scholar 

  • Blackman RK, Koehler MMD, Grimalia R, Gelbart WM (1989) Identification of a fully-functional hobo transposable element and its use for germ-line transformation of Drosophila. EMBO J 8:211–217

    Google Scholar 

  • Blinov AG, Sobanov YV, Gaidamakova EK, Bogachev SS, Kolesnikov NN, Filippova MA, Kiknadze II (1991) MEC: a transposable element from Chironomus thummi (Diptera). Mol Gen Genet 229:152–154

    Google Scholar 

  • Brookfield JFY (1995) Transposable elements as selfish DNA. In: Sherratt DJ (ed) Mobile genetic elements. IRL Press, Oxford New York Tokyo, pp 130–153

    Google Scholar 

  • Charlesworth B, Lapid A (1989) A study of ten families of transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet Res 54:113–125

    Google Scholar 

  • Collins FH, Besansky NJ (1994) Vecor biology and the control of malaria in Africa. Science 264:1874–1875

    Google Scholar 

  • Coluzzi M, Sabatini A, Petrarca V, Di Deco MA (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73:483–497

    Google Scholar 

  • Curtis CF (1994) The case for malaria control by genetic manipulation of its vectors. Parasitol Today 10:371–374

    Google Scholar 

  • Deininger PL, Batzer MA, Hutchison CA, Edgell MH (1992) Master genes in mammalian repetitive DNA amplification. Trends Genet 8:307–311

    Google Scholar 

  • Engels WR (1989) P elements in Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. Am soc Microbiol, Washington, DC, pp 437–484

    Google Scholar 

  • Finnegan DJ (1989) The I factor and I-R hybrid dysgenesis in Drosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. Am Soc Microbiol, Washington, DC, pp 503–517

    Google Scholar 

  • Githeko AK, Brandling-Bennett AD, Beier M, Atieli F, Owaga M, Collins FH (1992) The reservoir of Plasmodium falciparum malaria in a holoendemic area of western Kenya. Trans R Soc Trop Med Hyg 86:355–358

    Google Scholar 

  • Green MM (1988) Mobile DNA elements and spontaneous gene mutation. In: Lambert ME, McDonald JF, Weinstein IB (eds) Banbury Report 30: Eukaryotic transposable elements as mutagenic agents. Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, NY, pp 41–50

    Google Scholar 

  • Hankeln Th, Schmidt ER (1990) New foldback transposable element TFB1 found in histone genes of the midge Chironomus thummi J Mol Biol 215:477–482

    Google Scholar 

  • Hey J (1989) The transposable portion of the genome of Drosophila algonquin is very different from that in Drosophila melanogaster. Mol Biol Evol 6:66–79

    Google Scholar 

  • Holliday R (1982) Gene conversion: a possible mechanism for eliminating selfish DNA. In: Lemont JF, Generoso WM (eds) Molecular and cellular mechanisms of mutagenesis. Plenum, New York, pp 259–264

    Google Scholar 

  • Kidwell MG (1992) Horizontal transfer. Curr Opin Genet Dev 2:868–873

    Google Scholar 

  • Kidwell MG, Ribeiro JMC (1992) Can transposable elements be used to drive disease refractoriness genes into vector populations? Parasitol Today 8:325–329

    Google Scholar 

  • Kozlova TY, Semeshin VF, Tretyakova IV, Kokoza EB, Pirrotta V, Grafodatskaya VE, Belyaeva ES, Zhimulev IF (1994) Molecular and cytogenetical characterization of the 10A1-2 band and adjoining region in the Drosophila melanogaster polytene X chrosome. Genetics 136: 1063–1073

    Google Scholar 

  • Kumar V, Collins FH (1994) A technique for nucleic acid in situ hybridization to polytene chromosomes of mosquitoes in the Anopheles gambiae complex. Insect Mol Biol 3:41–47

    Google Scholar 

  • Langley CH, Montgomery EA, Hudson R, Kaplan NL, Charlesworth B (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–236

    Google Scholar 

  • Leigh-Brown AJ, Moss JE (1987) Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet Res 49:121–128

    Google Scholar 

  • Lidholm D-A, Lohe AR, Hartl DL (1993) The transposable element mariner mediates germline transformation in Drosophil melanogaster. Genetics 134:859–868

    Google Scholar 

  • Louis C, Yannopoulos G (1988) The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster. Oxf Surv Eukaryotic Genes 5:205–250

    Google Scholar 

  • Loukeris TG, Livadaras I, Arca B, Savakis C (1995) The white gene of Ceratitis capitata: a phenotypic marker for germline transformation. Science 270:2005–2008

    Google Scholar 

  • Lyttle TW, Haymer DS (1992) The role of the transposble element hobo the origin of endemic inversions in wild populations of Drosophila melanogaster. Genetica 86:113–126

    Google Scholar 

  • Maruyama K, Hartl DL (1991) Evolution of the transposable element mariner in Drosophila species. Genetics 128:319–329

    Google Scholar 

  • Mason JM, Biessmann H (1995) The unusual telomeres of Drosophila. Trends Genet 11:58–62

    Google Scholar 

  • Montgomery EA, Langley CH (1983) Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in natural population of Drosophila melanogaster. Genetics 104:473–483

    Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362:241–245

    Google Scholar 

  • Robertson HM, Lampe DJ (1995) Distribution of transposable elements in arthropods. Annu Rev Entomol 40:333–357

    Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Google Scholar 

  • Rudkin GT (1972) Replication in polytene chromosomes. Results Probl Cell Differ 4:59–85

    Google Scholar 

  • Schmidt ER (1984) Clustered and interspersed repetitive DNA sequence family of Chironomus. J Mol Biol 178:1–15

    Google Scholar 

  • Simmons GM (1992) Horizontal tranfer of hobo transposable elements within the Drosophila melanogaster species complex: evidence from DNA sequencing. Mol Biol Evol 9:1050–1060

    Google Scholar 

  • Spierer PA (1984) A molecular approach to chromosome organization. Dev Genet 4:333–339

    Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218: 341–347

    Google Scholar 

  • Strand, DJ, McDonald JF (1989) Insertion af a, copia element 5′ to the D. melanogaster alcohol dehydrogenase gene (adh) is associated with altered developmental and tissue-specific patterns of expression. Genetics 121:787–794

    Google Scholar 

  • Strobel E, Dunsmuir P, Rubin GM (1979) Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17:429–439

    Google Scholar 

  • Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661

    Google Scholar 

  • Wobus U, Baumlein H, Bogachev SS, Borisevich IV, Panitz R, Kolesnikov NN (1990) A new transposable element in Chironomus thummi. Mol Gen Genet 222:311–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Besansky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukabayire, O., Besansky, N.J. Distribution of T1, Q, Pegasus and mariner transposable elements on the polytene chromosomes of PEST, a standard strain of Anopheles gambiae . Chromosoma 104, 585–595 (1996). https://doi.org/10.1007/BF00352298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352298

Keywords

Navigation