Skip to main content
Log in

Mhc class II diversity and balancing selection in greater prairie-chickens

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The major histocompatibility complex (Mhc) of domestic chickens has been characterized as small and relatively simple compared with that of mammals. However, there is growing evidence that the Mhc of many bird lineages may be more complex, even within the Order Galliformes. In this study, we measured genetic variation and balancing selection at Mhc loci in another galliform, the greater prairie-chicken. We cloned and sequenced a 239 bp fragment of Mhc Class II β-chain (BLB) exon 2 in 14 individuals. There was a total of 10 unique sequences and a minimum of four BLB loci. The d N/d S ratio at peptide-binding codons was significantly greater than one, suggesting balancing selection is acting on the BLB. We also recovered two YLB sequences, which clustered tightly with YLB sequences from three other species: domestic chicken, black grouse and common quail. The relatively large number of loci revealed in our study suggests that even closely related galliforms differ in the level of Mhc variation and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afanassieff M, Goto RM, Ha J, Sherman MA, Zhong LW, Auffray C, Coudert F, Zoorob R, Miller MM (2001) At least one class I gene in restriction fragment pattern-Y (Rfp-Y), the second MHC gene cluster in the chicken, is transcribed, polymorphic, and shows divergent specialization in antigen binding region. J Immunol 166:3324–3333

    CAS  PubMed  Google Scholar 

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    CAS  PubMed  Google Scholar 

  • Bellinger MR, Johnson JA, Toepfer J, Dunn P (2003) Loss of genetic variation in greater prairie chickens following a population bottleneck in Wisconsin, USA. Conser Biol 17:717–724

    Article  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  CAS  PubMed  Google Scholar 

  • Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865

    Article  CAS  PubMed  Google Scholar 

  • Boonyanuwat K, Thummabutra S, Sookmanee N, Vatchavalkhu V, Siripholvat V (2006) Influences of major histocompatibility complex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens. Anim Sci J 77:285–289

    Article  CAS  Google Scholar 

  • Briles WE, Goto RM, Auffray C, Miller MM (1993) A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37:408–414

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class-II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Burri R, Niculita-Hirzel H, Roulin A, Fumagalli L (2008) Isolation and characterization of major histocompatibility complex (MHC) class IIB genes in the barn owl (Aves: Tyto alba). Immunogenetics 60:543–550

    Article  CAS  PubMed  Google Scholar 

  • Carrington M, O’Brien SJ (2003) The influence of HLA genotype on AIDS. Ann Rev Med 54:535–551

    Article  CAS  PubMed  Google Scholar 

  • Chaves LD, Krueth SB, Reed KM (2007) Characterization of the turkey MHC chromosome through genetic and physical mapping. Cytogenet Genome Res 117:213–220

    Article  CAS  PubMed  Google Scholar 

  • Dietert R, Dietert M (1991) The chicken major histocompatibility complex: structure and impact on immune function, disease resistance and productivity. In: Monographs in Animal Immunology, vol 1. Bar-Lab, Blacksburg

    Google Scholar 

  • Edwards SV, Wakeland EK, Potts WK (1995) Contrasting histories of avian and mammalian Mhc genes revealed by class II B sequences from songbirds. Proc Natl Acad Sci USA 92:12200–12204

    Article  CAS  PubMed  Google Scholar 

  • Edwards SV, Hess CM, Gasper J, Garrigan D (1999) Toward an evolutionary genomics of the avian Mhc. Immunol Rev 167:119–132

    Article  CAS  PubMed  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: Detecting adaptive molecular polymorphism: Lessons from the MHC. Evolution 57:1707–1722

    CAS  PubMed  Google Scholar 

  • Hall TA (1999) Bioedit is a user friendly sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95–98

    CAS  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431

    Article  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class-I loci reveals overdominant selection. Nature 335:167–170

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class-II loci—evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Ann Rev Gen 32:415–435

    Article  CAS  Google Scholar 

  • Hughes CR, Miles S, Walbroehl JM (2008) Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class IIB gene. Immunogenetics 60:219–231

    Article  CAS  PubMed  Google Scholar 

  • Hunt HD, Goto RM, Foster DN, Bacon LD, Miller MM (2006) At least one Y MHC I molecule in the chicken is alloimmunogenic and dynamically expressed on spleen cells during development. Immunogenetics 58:297–307

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchick M (2005) Immunobiology: the immune system in health and disease. Garland Press, New York

    Google Scholar 

  • Johnson JA, Bellinger MR, Toepfer JE, Dunn P (2004) Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol Ecol 13:2617–2630

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J (2008) The avian MHC. In: KB DavisonF, Schat K (eds) Avian Immunology. Academic Press, London, pp 159–181

    Chapter  Google Scholar 

  • Kaufman J, Völk H, Wallny H-J (1995) A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    Article  CAS  PubMed  Google Scholar 

  • Kaufman J, Milne S, Gobel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Lillehoj HS, Hong YH, Park DW, Lamont SJ, Han JY, Lillehoj EP (2008) Immune-related gene expression in two B-complex disparate genetically inbred Fayoumi chicken lines following Eimeria maxima infection. Poul Sci 87:433–443

    Article  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley Press, New York

    Google Scholar 

  • Klein J, Sato A, Nagl S, O’HUigin C (1998) Molecular trans-species polymorphism. Ann Rev Ecol Syst 29:1–21

    Article  Google Scholar 

  • Kriegs JO, Matzke A, Churakov G, Kuritzin A, Mayr G, Brosius J, Schmitz J (2007) Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evol Biol 7:11

    Article  Google Scholar 

  • Kroemer G, Guillemot F, Auffray C (1990) Genetic organization of the chicken Mhc. Immunol Res 9:8–19

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) Integrated software for molecular evolutionary genetic analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Longeri M, Zanotti M, Damiani G (2002) Recombinant DRB sequences produced by mismatch repair of heteroduplexes during cloning in Escherichia coli. Euro J Immunogenet 29:517–523

    Article  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721

    Article  CAS  PubMed  Google Scholar 

  • Miller MM, Goto RM, Taylor RL, Zoorob R, Auffray C, Briles RW, Briles WE, Bloom SE (1996) Assignment of Rfp-Y to the chicken major histocompatibility complex NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region. Proc Natl Acad Sci USA 93:3958–3962

    Article  CAS  PubMed  Google Scholar 

  • Nadeau NJ, Burke T, Mundy NI (2007) Evolution of an avian pigmentation gene correlates with a measure of sexual selection. Proc R Soc B Biol Sci 274:1807–1813

    Article  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    Article  CAS  PubMed  Google Scholar 

  • Owen JP, Delany ME, Mullens BA (2008) MHC haplotype involvement in avian resistance to an ectoparasite. Immunogenetics 60:621–631

    Article  CAS  PubMed  Google Scholar 

  • Pharr GT, Gwynn AV, Bacon LD (1996) Histocompatibility antigen(s) linked to Rfp-Y (Mhc-like) genes in the chicken. Immunogenetics 45:52–58

    Article  CAS  PubMed  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Ploegh HL, Neefjes JJ, Stollorz V, Gehrmann M, Peters P, Geuze H (1990) The role of MHC molecules during activation of immune cells. Biol Chem 371:187

    Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Schou TW, Permin A, Juul-Madsen HR, Sorensen P, Labouriau R, Nguyen TLH, Fink M, Pham SL (2007) Gastrointestinal helminths in indigenous and exotic chickens in Vietnam: association of the intensity of infection with the major histocompatibility complex. Parasitology 134:561–573

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763

    CAS  PubMed  Google Scholar 

  • Shiina T, Hosomichi K, Hanzawa K (2006) Comparative genomics of the poultry major histocompatibility complex. Anim Sci J 77:151–162

    Article  CAS  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16

    Article  PubMed  Google Scholar 

  • Strand T, Westerdahl H, Hoeglund J, Alatalo RV, Siitari H (2007) The Mhc class II of the black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  • Tsuda TT, Tsuda M, Naruse T, Kawata H, Ando A, Shiina T, Fukuda M, Kurita M, LeMaho I, Kulski JK, Inoko H (2001) Phylogenetic analysis of penguin (Spheniscidae) species based on sequence variation in MHC class II genes. Immunogenetics 53:712–716

    Article  CAS  PubMed  Google Scholar 

  • Wakenell PS, Miller MM, Goto RM, Gauderman WJ, Briles WE (1996) Association between the Rfp-Y haplotype and the incidence of Marek’s disease in chickens. Immunogenetics 44:242–245

    Article  CAS  PubMed  Google Scholar 

  • Wallny HJ, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, Skjodt K, Vainio O, Vilbois F, Wiles MV, Kaufman J (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci USA 103:1434–1439

    Article  CAS  PubMed  Google Scholar 

  • Westerdahl H (2007) Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol 148:S469–S477

    Article  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (2000) Mhc diversity in two passerine birds: no evidence for a minimal essential Mhc. Immunogenetics 52:92–100

    Article  CAS  PubMed  Google Scholar 

  • Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two MHC class II B loci in pheasants and domestic chickens. Mol Biol Evol 16:479–490

    CAS  PubMed  Google Scholar 

  • Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typing of MHC class I and class IIB loci in a population of red jungle fowl. Immunogenetics 60:233–247

    Article  CAS  PubMed  Google Scholar 

  • Zelano B, Edwards SV (2002) An MHC component to kin recognition and mate choice in birds: Predictions, progress, and prospects. Am Nat 160:S225–S237

    Article  PubMed  Google Scholar 

  • Zoorob R, Behar G, Kroemer G, Auffray C (1990) Organization of a functional chicken class-II B-gene. Immunogenetics 31:179–187

    Article  CAS  PubMed  Google Scholar 

  • Zoorob R, Bernot A, Renoir DM, Choukri F, Auffray C (1993) Chicken major histocompatibility complex class II B genes: analysis of interallelic and inter-locus sequence variance. Eur J Immunol 23:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Zorn AM, Krieg PA (1991) PCR analysis of alternative splicing pathways: identification of artifacts generated by heteroduplex formation. Biotechniques 11:180–184

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by a Research Growth Initiative grant from the University of Wisconsin–Milwaukee Graduate School and the Wisconsin Department of Natural Resources to PD and LW and grants from the American Ornithologists’ Union and the Ruth Walker Research Award from the University of Wisconsin-Milwaukee to JE. We thank J. Toepfer, J. Johnson and R. Bellinger for tissue collection and processing and Erika Olson for assistance in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Eimes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eimes, J.A., Bollmer, J.L., Dunn, P.O. et al. Mhc class II diversity and balancing selection in greater prairie-chickens. Genetica 138, 265–271 (2010). https://doi.org/10.1007/s10709-009-9417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9417-4

Keywords

Navigation