Skip to main content

Advertisement

Log in

Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class II B gene

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

We characterized the MHC class II B gene in the green-rumped parrotlet, Forpus passerinus. Three approaches were used: polymerase chain reaction amplification using primers complementary to conserved regions of exon 2, sequencing clones from a genomic library, and amplification of exon 2 using species-specific primers. All three methods indicate that there is only a single class II B locus in this species and no pseudogenes. We suggest that this is the ancestral state for birds. The gene is highly polymorphic; 33 alleles were found in a sample of 25 individuals. Variation in exon 2 is concentrated in the peptide binding residues which show a significant excess of non-synonymous substitutions consistent with the operation of selection in maintaining this extraordinary polymorphism. Genomic clones show that major histocompatibility complex (MHC) gene organization is different from that of chickens; the class II A locus is close to II B. These data provide support for the hypothesis that the bird MHC constitutes a “minimal essential MHC” for responding to infectious disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcaide M, Edwards SV, Negro JJ (2007) Characterization, polymorphism, and evolution of MHC class IIB genes in birds of prey. J Mol Evol 65:541–554

    Article  PubMed  CAS  Google Scholar 

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    PubMed  CAS  Google Scholar 

  • Beck S, Trowsdale J (2000) The human major histocompatibility complex: lessons from the DNA sequence. Annu Rev Genomics Hum Genet 1:117–137

    Article  PubMed  CAS  Google Scholar 

  • Beissinger SR, Bucher EH (1992) Can parrots be conserved through sustainable harvesting. BioScience 42:164–173

    Article  Google Scholar 

  • Beissinger SR, Waltman JR (1991) Extraordinary clutch size and hatching asynchrony of a neotropical parrot. Auk 108:863–871

    Google Scholar 

  • Bollmer JL, Hernán Vargas F, Parker PG (2007) Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus). Immunogenetics 59:593–602

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud C, Mazuc J, Chastel O, Westerdahl H, Sorci G (2004a) Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution 58:2823–2830

    PubMed  CAS  Google Scholar 

  • Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004b) Diversity of MHC class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud C, Chastel O, Federici P, Westerdahl H, Sorci G (2006a) Complex MHC-based mate choice in a wild passerine. Proc R Soc B, Biol Sci 273:1111–1116

    Article  CAS  Google Scholar 

  • Bonneaud C, Perez-Tris J, Federici P, Chastel O, Sorci G (2006b) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60:383–389

    PubMed  CAS  Google Scholar 

  • Briles WE, Briles RW, Taffs RE (1983) Resistance to malignant lymphoma is mapped to a subregion of major histocompatability (B) complex. Science 219:977–979

    Article  PubMed  CAS  Google Scholar 

  • Briles WE, Goto RM, Auffray C, Miller MM (1993) A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37:408–414

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  PubMed  CAS  Google Scholar 

  • Brown JW, Payne RB, Mindell DP (2007) Nuclear DNA does not reconcile ‘rocks’ and ‘clocks’ in Neoaves: a comment on Ericson et al.. Biol Lett 3:257–259

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Carpenter SL, Lamont SJ (2000) A functional role for the Y box in regulating an MHC class II B gene promoter in chicken lymphocytes. Immunogenetics 51:882–886

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Lillehoj HS, Hsu C-H, Carpenter SL, Lamont SJ (1997) Functional characterization of a chicken major histocompatibility complex class II B gene promoter. Immunogenetics 45:242–248

    Article  PubMed  CAS  Google Scholar 

  • De Sandro A, Nagarajan UM, Boss JM (1999) The bare lymphocyte syndrome: molecular clues to the transcriptional regulation of major histocompatibility class II genes. Am J Hum Genet 65:279–286

    Article  Google Scholar 

  • Edwards SV, Grahn M, Potts W (1995a) Dynamics of MHC evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 95:719–729

    Article  Google Scholar 

  • Edwards SV, Wakeland EK, Potts WK (1995b) Contrasting histories of avian and mammalian MHC genes revealed by class II B sequences from songbirds. Proc Natl Acad Sci U S A 92:12200–12204

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311

    Article  Google Scholar 

  • Edwards SV, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB-1, and MHC class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–250

    PubMed  CAS  Google Scholar 

  • Edwards SV, Gasper J, Garrigan D, Martindale D, Koop BF (2000) A 39-kb sequence around a blackbird MHC class II gene: ghost of selection past and songbird genome architecture. Mol Biol Evol 17:1384–1395

    PubMed  CAS  Google Scholar 

  • Ekblom R, Grahn M, Hoglund J (2003) Patterns of polymorphism in the MHC class II of a non-passerine bird, the great snipe (Gallinago media). Immunogenetics 54:734–741

    PubMed  CAS  Google Scholar 

  • Ekblom R, Saether SA, Grahn M, Fiske P, Kålåss A, Höglund J (2004) Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol Ecol 13:3821–3828

    Article  PubMed  CAS  Google Scholar 

  • Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Kallersjo M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–U1

    Article  PubMed  Google Scholar 

  • Ericson PGP, Anderson CL, Mayr G (2007) Hangin’ on to our rocks ‘n clocks: a reply to Brown et al. Biol Lett 3:260–261

    Article  CAS  Google Scholar 

  • Forshaw JM (1989) Parrots of the world. David & Charles Ltd., London, England

    Google Scholar 

  • Freeman-Gallant CR, Johnson EM, Saponara F, Stanger M (2002) Variation at the MHC in Savannah sparrows. Mol Ecol 11:1125–1130

    Article  PubMed  CAS  Google Scholar 

  • Freeman-Gallant CR, Geguerdichian M, Wheelwright NT, Sollecito SV (2003) Social-pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol Ecol 12:3077–30830

    Article  PubMed  Google Scholar 

  • Friedman H, Smith FD (1950) A contribution to the ornithology of northeastern Venezuela. Proc US Natl Mus 100:411–538

    Google Scholar 

  • Frohman MA, Martin GR (1990) RACE: Rapid amplification of cDNA ends. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego

    Google Scholar 

  • Gasper JS, Shiina T, Inoko H, Edwards SV (2001) Songbird genomics: analysis of 45 kb upstream of a polymorphic MHC class II gene in red-winged blackbirds (Agelaius phoeniceus). Genomics 75:26–34

    Article  PubMed  CAS  Google Scholar 

  • Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebø S, Stet RJM (2003) MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics 55:210–219

    Article  PubMed  CAS  Google Scholar 

  • Guillemot F (1991) The chicken major histocompatibility complex (MHC): evolutionary conserved class I and class II genes are closely associated with non-MHC genes. Am Zool 31:592–597

    Google Scholar 

  • Guillemot F, Billault A, Pourquié O, Béhar G, Chaussé A-M, Zoorob R, Kreibich G, Auffray C (1988) A molecular map on the chicken major histocompatibility complex: the class II B genes are closely linked to the class I genes and the nucleolar organizer. EMBO J 7:2775–2785

    PubMed  CAS  Google Scholar 

  • Hedrick PW, Thompson G (1983) Evidence for balancing selection at HLA. Genetics 104:449–456

    PubMed  CAS  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. BioScience 52:423–431

    Article  Google Scholar 

  • Hess CM, Gasper J, Hoekstra HE, Hill CE, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus). Genome Res 10:613–623

    Article  PubMed  CAS  Google Scholar 

  • Hickson RE, Cann RL (1997) MHC allelic diversity and modern human origins. Mol Evol 45:589–598

    Article  CAS  Google Scholar 

  • Hosomichi K, Shiina T, Suzuki S, Tanaka M, Shimizu S, Iwamoto S, Hara H, Yoshida Y, Kulski JK, Inoko H, Hanzawa K (2006) The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics 7:322

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (2002) Natural selection and the diversification of the vertebrate immune effectors. Immunol Rev 190:161–168

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yaeger M (1998) Natural selection and the evolutionary history of major histocompatibility complex loci. Front Biosci 3:d509–d516

    PubMed  CAS  Google Scholar 

  • Hunt HD, Goto RM, Foster DN, Bacon LD, Miller MM (2006) At least one YMHCI molecule in the chicken is alloimmunogenic and dynamically expressed on spleen cells during development. Immunogenetics 58:297–307

    Article  PubMed  CAS  Google Scholar 

  • Jacob JP, Milne S, Beck S, Kaufman J (2000) The major and minor class II B-chain (B-LB) gene flank the Tapasin gene in hte B-F/B-L region of the chicken major histocompatibility complex. Immunogenetics 51:138–147

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J (1999) The chicken B locus is a minimal-essential major histocompatibility complex. Nature 410:923–295

    Article  CAS  Google Scholar 

  • Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999) Gene organization determines the evolution of function in the chicken MHC. Immunol Rev 167:101–117

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Völk H, Wallny H (1995) A “minimal essential MHC and an unrecognized MHC”: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Langefors Å, Lohm J, von Schantz T (2001) Allelic polymorphism in MHC class II B in four populations of Atlantic salmon, (Salmo salar). Immunogenetics 53:329–336

    Article  PubMed  CAS  Google Scholar 

  • LePage KT, Miller MM, Briles WE, Taylor RL (2000) Rfp-Y genotype affects the fate of Rous sarcomas in B-2 B-5 chickens. Immunogenetics 51:751–754

    Article  PubMed  CAS  Google Scholar 

  • Mach B, Steimle V, MartinezSoria E, Reith W (1996) Regulation of MHC class II genes: lessons from a disease. Annu Rev Immunol 14:301–331

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Rybicki E (2000) RDP: detection of recombination among aligned sequences. Bioinformatics 16:562–563

    Article  PubMed  CAS  Google Scholar 

  • Martinsohn JT, Sousa AB, Guethlein LA, Howard JC (1999) The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 50:168–200

    Article  PubMed  CAS  Google Scholar 

  • Meyer D, Thompson G (2001) How selection shapes variation on the human major histocompatibility complex: a review. Ann Hum Genet 65:1–26

    Article  PubMed  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721

    Article  PubMed  CAS  Google Scholar 

  • Moon DA, Veniamin SM, Parks-Dely JA, Magor KE (2005) The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. J Immunol 175:6702–6712

    PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Parham P, Benjamin RJ, Chen BP, Clayberger C, Ennis PD, Krensky AM, Lawlor DA, Littman DR, Norment AM, Orr HT, Salter RD, Zemmour J (1989) Diversity of class I HLA molecules: functional and evolutionary interactions with T cells. Cold Spring Harbor Symp Quant Biol 54:529–543

    PubMed  CAS  Google Scholar 

  • Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74

    Article  PubMed  CAS  Google Scholar 

  • Piertney SB (2003) Major histocompatibility complex B-LB gene variation in red grouse Lagopus lagopus scoticus. Wildlife Biol 9:251–259

    Google Scholar 

  • Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SGE (2003) IMGT/HLA AND IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314

    Article  PubMed  CAS  Google Scholar 

  • Rohn WM, Lee Y-J, Benveniste EN (1996) Regulation of class II MHC expression. Crit Rev Immunol 16:311–330

    PubMed  CAS  Google Scholar 

  • Salomonsen J, Marston D, Avila D, Busmstead N, Johansson B, Juul-Madsen H, Olesen GD, Riegert P, Skjodt K, Vainio O, Wiles MV, Kaufman J (2003) The properties of the single chicken MHC classical class II a chain (B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules. Immunogenetics 55:605–614

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Figueroa F, Mayer WE, Grant PR, Grant BR, Klein J (1999) Mhc class II genes of Darwin’s finches: divergence by point mutations and reciprocal recombination. In: Kasahara M (ed) Major histocompatibility complex evolution, structure and function. Springer, Tokyo, pp 518–541

    Google Scholar 

  • Shaw I, Powell TJ, Marston DA, Baker K, van Hateren A, Riegert P, Wiles MV, Milne S, Beck S, Kaufman J (2007) Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 178:5744–5752

    PubMed  CAS  Google Scholar 

  • Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763

    PubMed  CAS  Google Scholar 

  • Shiina T, Hosomichi K, Hanzawa K (2006) Comparative genomics of the poultry major histocompatability complex. Anim Sci J 77:151–162

    Article  CAS  Google Scholar 

  • Skjodt K, Koch C, Crone M, Simonsen M (1985) Analysis of chickens for recombination within the MHC (B complex). Tissue Antigens 25:278–282

    PubMed  CAS  Google Scholar 

  • Strand T, Westerdahl H, Höglund J, Alatalo RV, Siitari H (2007) The Mhc class II of the black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale J (1995) Both man and bird and beast—comparative organization of Mhc Genes. Immunogenetics 41:1–17

    Article  PubMed  CAS  Google Scholar 

  • Tsuda TT, Tsuda M, Naruse T, Kawata H, Ando A, Shiina T, Fukuda M, Kurita M, LeMaho I, Kulski JK, Inoko H (2001) Phylogenetic analysis of penguin (Spheniscidae) species based on sequence variation in MHC class II genes. Immunogenetics 53:712–716

    Article  PubMed  CAS  Google Scholar 

  • van den Elsen PJ, Peijnenburg A, van Eggermond M, Gobin SJP (1998) Shared regulatory elements in the promoters of MHC class I and class II genes. Immunol Today 19:308–312

    Article  PubMed  Google Scholar 

  • Wallny HJ, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, Skjodt K, Vainio O, Vilbois F, Wiles MV, Kaufman J (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci U S A 103:1434–1439

    Article  PubMed  CAS  Google Scholar 

  • Waltman JR, Beissinger SR (1992) Breeding behavior of the green-rumped parrotlet. Wilson Bull 104:65–84

    Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (1999) Mhc diversity in two passerine birds: no evidence for a minimal essential MHC. Immunogenetics 52:92–100

    Article  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (2000) Mhc diversity in two passerine birds: no evidence for a minimal essential Mhc. Immunogenetics 52:92–100

    Article  PubMed  CAS  Google Scholar 

  • Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two MHC classII B loci in pheasants and domestic chickens. Mol Biol Evol 16:479–490

    PubMed  CAS  Google Scholar 

  • Zelano B, Edwards SV (2002) An MHC component to kin recognition and mate choice in birds: predictions, progress, and prospects. Am Nat 160:S225–S237

    Article  PubMed  Google Scholar 

  • Zhang B, Fang S-G, Xi Y-M (2006) Major histocompatibility complex variation in the crested ibis, Nipponia nippon, and implications for reintroduction. Biochem Genet 444:113–123

    Google Scholar 

  • Zoorob R, Béhar G, Kroemer G, Auffray C (1990) Organization of a functional chicken class II B gene. Immunogenetics 31:179–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Florida Atlantic University. Dr. Michael C. Schmale helped with the radioactive probing of the lambda library. Dr. Dean A. Williams developed the method for side-stepping plasmid minipreps and made many other contributions to the lab work. Faizan Kamdar, Fatima Tariq, Amanda Ramnauth, Nina Swadener, and Gina Landinez helped in the lab. We thank Dr. Jay Baldwin for access to his genetic analyzer. We are very grateful to Dr. S. Beissinger for developing the study system from which the blood samples were taken. Two anonymous reviewers provided very helpful suggestions. This work was done in accordance with the laws of the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin R. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, C.R., Miles, S. & Walbroehl, J.M. Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class II B gene. Immunogenetics 60, 219–231 (2008). https://doi.org/10.1007/s00251-008-0287-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0287-1

Keywords

Navigation