Skip to main content

Advertisement

Log in

Nitrogen dynamics in stockless organic clover–grass and cereal rotations

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

We applied a mechanistic ecosystem model to investigate the production and environmental performances of (1) current agricultural practice on two fields of a stockless organic cereal farm in southeast Norway and (2) alternative cereal-ley rotations and plowing time scenarios. Scenarios were simulated using historic weather data and a climate change scenario. Measured and simulated soil mineral N concentrations were generally low (1–4 g N m−2) and in good agreement. Simulated nitrate leaching was similar for the two fields, except when an extended period of black fallow weeding was practiced on one of them. Scenario simulations indicated that continuous cereal cropping undersown with a clover–grass winter cover crop performed best when evaluated by whole-rotation grain yield, the N yield/input-, and N loss/yield-ratios, and greenhouse gas emissions. However, the rotation had the largest soil organic matter losses. The N use and loss efficiency indicators were especially poor when ley years occurred consecutively and under fall plowing. Total greenhouse gas emissions were, however, smaller for the fall-plowed scenarios. In conclusion, our results indicated a modest potential for improving stockless systems by management changes in plowing time or crop rotation, which was hardly different in the climate change scenarios, although nitrate leaching increased substantially in the winter. Alternative strategies seem necessary to substantially improve the N-use efficiency in stockless organic grain production systems, e.g., biogas production from green manure and subsequent recycling of the digestate. Abandoning the stockless system and reintegrating livestock should also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berry PM, Sylvester-Bradley R, Philipps L, Hatch DJ, Cuttle SP, Rayns FW, Gosling P (2002) Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag 18:248–255. doi:10.1079/sum2002129

    Article  Google Scholar 

  • Bleken MA, Herrmann A, Haugen LE, Taube F, Bakken L (2009) SPN: a model for the study of soil-plant nitrogen fluxes in silage maize cultivation. Eur J Agron 30(4):283–295. doi:10.1016/j.eja.2009.01.001

    Article  CAS  Google Scholar 

  • Blombäck K, Eckersten H (1997) Simulated growth and nitrogen dynamics of a perennial rye grass. Agric For Meteorol 88(1–4):37–45

    Article  Google Scholar 

  • Borgen SK, Molstad L, Bruun S, Breland TA, Bakken L, Bleken MA (2011) Estimation of plant litter pools and decomposition-related parameters in a mechanistic model. Plant Soil 338:205–222. doi:10.1007/s11104-010-0404-4

    Article  CAS  Google Scholar 

  • Breland TA, Eltun R (1999) Soil microbial biomass and mineralization of carbon and nitrogen in ecological, integrated and conventional forage and arable cropping systems. Biol Fertil Soils 30(3):193–201

    Article  CAS  Google Scholar 

  • Bremmer JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. American Society of Agronomy, Madison, USA, pp 595–624

  • Bruun S, Jensen LS (2002) Initialisation of the soil organic matter pools of the Daisy model. Ecol Model 153(3):291–295

    Article  Google Scholar 

  • Calderon FJ, Jackson LE, Scow KM, Rolston DE (2001) Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acids after tillage. Soil Sci Soc Am J 65(1):118–126

    Article  CAS  Google Scholar 

  • Chirinda N, Carter MS, Albert KR, Ambus P, Olesen JE, Porter JR, Petersen SO (2010) Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agric Ecosyst Environ 136(3–4):199–208. doi:10.1016/j.agee.2009.11.012

    Article  CAS  Google Scholar 

  • Dahlin AS, Stenberg M (2010) Transfer of N from red clover to perennial ryegrass in mixed stands under different cutting strategies. Eur J Agron 33(3):149–156. doi:10.1016/j.eja.2010.04.006

    Article  CAS  Google Scholar 

  • Dahlin S, Kirchmann H, Katterer T, Gunnarsson S, Bergstrom L (2005) Possibilities for improving nitrogen use from organic materials in agricultural cropping systems. Ambio 34(4–5):288–295

    PubMed  Google Scholar 

  • Deelstra J, Bachmann M, Kvaerno SH (2002) SOIL and SOIL-NO at catchment scale—a case study for an agriculture-dominated catchment. Water Sci Technol 45(9):9–17

    PubMed  CAS  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala AE, Phongpan S (2000) General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochem Cycles 14(4):1045–1060

    Article  Google Scholar 

  • Del Grosso S, Halvorsen A, Parton WJ (2008) Testing Daycent model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado. J Environ Qual 37:1383–1389

    Article  PubMed  Google Scholar 

  • DeLuca T, Keeney D, McCarty GW (1992) Effects of freeze-thaw events on mineralization of soil nitrogen. Biol Fertil Soils 14:116–120

    Article  CAS  Google Scholar 

  • Doltra J, Laegdsmand M, Olesen JE (2011) Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: a combined modeling and experimental approach. Eur J Agron 34(2):83–95. doi:10.1016/j.eja.2010.11.002

    Article  Google Scholar 

  • Engen-Skaugen T (2007) Refinement of dynamically downscaled precipitation and temperature scenarios. Clim Chang 84(3–4):365–382. doi:10.1007/s10584-007-9251-6

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168

    Article  Google Scholar 

  • Hansen B, Kristensen ES, Grant R, Hogh-Jensen H, Simmelsgaard SE, Olesen JE (2000) Nitrogen leaching from conventional versus organic farming systems—a systems modelling approach. Eur J Agron 13(1):65–82

    Article  CAS  Google Scholar 

  • Høgh-Jensen H (1997) Biological nitrogen fixation in clover-ryegrass systems. PhD Thesis, The Royal Veterinary and Agricultural University, Copenhagen

  • Høgh-Jensen H, Schjørring JK (2001) Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biol Biochem 33(4–5):439–448

    Article  Google Scholar 

  • Jansson PE, Karlberg L (2001) Coupled heat and Mass transfer model for soil-plant-atmosphere systems. Department of Civil and Environmental Engineering, Royal Institute of Technology, Stockholm

    Google Scholar 

  • Jansson PE, Moon DS (2001) A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environ Model Softw 16(1):37–46

    Article  Google Scholar 

  • Jansson PE, Svensson M, Kleja DB, Gustafsson D (2008) Simulated climate change impacts on fluxes of carbon in Norway spruce ecosystems along a climatic transect in Sweden. Biogeochemistry 89(1):81–94. doi:10.1007/s10533-007-9147-6

    Article  CAS  Google Scholar 

  • Jensen ES (1996) Grain yield, symbiotic N-2 fixation and interspecific competition for inorganic N in pea–barley intercrops. Plant Soil 182(1):25–38

    Article  CAS  Google Scholar 

  • Jensen LS, Salo T, Palmason F, Breland TA, Henriksen TM, Stenberg B, Pedersen A, Lundstrom C, Esala M (2005) Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant Soil 273(1–2):307–326

    Article  CAS  Google Scholar 

  • Johnson JMF, Archer D, Barbour N (2010) Greenhouse gas emission from contrasting management scenarios in the Northern Corn Belt. Soil Sci Soc Am J 74(2):396–406. doi:10.2136/sssaj2009.0008

    Article  CAS  Google Scholar 

  • Johnsson H, Bergstrom L, Jansson PE, Paustian K (1987) Simulated nitrogen dynamics and losses in a layered agricultural soil. Agric Ecosyst Environ 18(4):333–356

    Article  Google Scholar 

  • Kirchmann H, Marstorp H (1991) Calculation of N-mineralization from 6 green manure legumes under field conditions from autumn to spring. Acta Agric Scand 41(3):253–258

    Article  Google Scholar 

  • Knudsen MT, Kristensen IBS, Berntsen J, Petersen BM, Kristensen ES (2006) Estimated N leaching losses for organic and conventional farming in Denmark. J Agric Sci 144:135–149. doi:10.1017/s0021859605005812

    Article  Google Scholar 

  • Korsaeth A (2008) Relations between nitrogen leaching and food productivity in organic and conventional cropping systems in a long-term field study. Agric Ecosyst Environ 127(3–4):177–188. doi:10.1016/j.agee.2008.03.014

    Article  CAS  Google Scholar 

  • Korsaeth A, Eltun R (2000) Nitrogen mass balances in conventional, integrated and ecological cropping systems and the relationship between balance calculations and nitrogen runoff in an 8-year field experiment in Norway. Agric Ecosyst Environ 79(2–3):199–214

    Article  CAS  Google Scholar 

  • Korsaeth A, Henriksen TM, Bakken LR (2002) Temporal changes in mineralization and immobilization of N during degradation of plant material: implications for the plant N supply and nitrogen losses. Soil Biol Biochem 34(6):789–799

    Article  CAS  Google Scholar 

  • Korsaeth A, Bakken LR, Riley H (2003) Nitrogen dynamics of grass as affected by N input regimes, soil texture and climate: lysimeter measurements and simulations. Nutr Cycl Agroecosyst 66(2):181–199

    Article  CAS  Google Scholar 

  • Lampkin N (1994) Organic farming. Farming Press, Ipswich

    Google Scholar 

  • Li CS, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Chang 72(3):321–338. doi:10.1007/s10584-005-6791-5

    Article  CAS  Google Scholar 

  • Løes AK, Henriksen TM, Eltun R, Sjursen H (2011) Repeated use of green-manure catch crops in organic cereal production—grain yields and nitrogen supply. Acta Agric Scand Sect B-Soil Plant Sci 61(2):164–175. doi:10.1080/09064711003655509

    Google Scholar 

  • Lundkvist A, Salomonsson L, Karlsson L, Gustavsson AMD (2008) Effects of organic farming on weed flora composition in a long term perspective. Eur J Agron 28(4):570–578. doi:10.1016/j.eja.2008.01.001

    Article  Google Scholar 

  • Lynch D (2009) Environmental impacts of organic agriculture: a Canadian perspective. Can J Plant Sci 89(4):621–628

    Article  CAS  Google Scholar 

  • McGeehan MB, Henshall JK, Vinten AJA (2005) Cultivation and soil organic matter management in low input cereal production following the ploughing out of grass leys. Biosyst Eng 90(1):85–101. doi:10.1016/j.biosystemseng.2004.07.003

    Article  Google Scholar 

  • Mørkved PT, Dörsch P, Henriksen TM, Bakken LR (2006) N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biol Biochem 38(12):3411–3420. doi:10.1016/j.soilbio.2006.05.015

    Article  Google Scholar 

  • Myers R, van Nordwijk M, Vityakon P (1997) Synchrony of nutrient release and plant demand: plant litter quality, soil environment and farmer management options. In: Cadish G, Giller K (eds) Driven by nature: plant litter quality and decomposition. CAB International, Oxon

    Google Scholar 

  • Nykanen A, Salo T, Granstedt A (2009) Simulated cereal nitrogen uptake and soil mineral nitrogen after clover-grass leys. Nutr Cycl Agroecosyst 85(1):1–15. doi:10.1007/s10705-008-9244-5

    Article  Google Scholar 

  • Petersen BM, Berntsen J, Hansen S, Jensen LS (2005) CN-SIM—a model for the turnover of soil organic matter. I. Long-term carbon and radiocarbon development. Soil Biol Biochem 37(2):359–374. doi:10.1016/j.soilbio.2004.08.006

    Article  CAS  Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106(1):203–208. doi:10.1073/pnas.0810193105

    Article  PubMed  CAS  Google Scholar 

  • Silgram M, Shepherd M (1999) The effects of cultivation on soil nitrogen mineralization. Adv Agron 65:267–311

    Article  Google Scholar 

  • Stake RE (2000) Case studies. In: Denzin NK, Lincoln YS (eds) The handbook of qualitative research. Sage Publications, Thousand Oaks, pp 435–454

    Google Scholar 

  • Steinshamn H, Thuen E (2008) White or red clover-grass silage in organic dairy milk production: grassland productivity and milk production responses with different levels of concentrate. Livest Sci 119(1–3):202–215. doi:10.1016/j.livsci.2008.04.004

    Article  Google Scholar 

  • Stockdale EA, Lampkin NH, Hovi M, Keatinge R, Lennartsson EKM, Macdonald DW, Padel S, Tattersall FH, Wolfe MS, Watson CA (2001) Agronomic and environmental implications of organic farming systems. Adv Agron 70:261–327

    Article  Google Scholar 

  • Stolze M, Piorr A, Häring A, Dabbert S (2000) The environmental impacts of organic farming in Europe, vol 6. Organic farming in Europe: economics and policy. University of Hohenheim, Stuttgart

  • Stopes C, Lord EI, Philipps L, Woodward L (2002) Nitrate leaching from organic farms and conventional farms following best practice. Soil Use Manag 18:256–263. doi:10.1079/sum2002128

    Article  Google Scholar 

  • Sturite I, Uleberg MV, Henriksen TM, Jorgensen M, Bakken AK, Breland TA (2006) Accumulation and loss of nitrogen in white clover (Trifolium repens L.) plant organs as affected by defoliation regime on two sites in Norway. Plant Soil 282(1–2):165–182. doi:10.1007/s11104-005-5697-3

    Article  CAS  Google Scholar 

  • Sturite I, Henriksen TM, Breland TA (2007) Winter losses of nitrogen and phosphorus from Italian ryegrass, meadow fescue and white clover in a northern temperate climate. Agric Ecosyst Environ 120(2–4):280–290. doi:10.1016/j.agee.2006.10.001

    Article  CAS  Google Scholar 

  • Szumigalski A, Van Acker R (2005) Weed suppression and crop production in annual intercrops. Weed Sci 53(6):813–825

    Article  CAS  Google Scholar 

  • Thomsen IK, Lægdsmand M, Olesen JE (2010) Crop growth and nitrogen turnover under increased temperatures and low autumn and winter light intensity. Agric Ecosyst Environ 139(1–2):187–194. doi:10.1016/j.agee.2010.07.019

    Article  Google Scholar 

  • Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302

    Article  Google Scholar 

  • Vold A, Søreng JS (1997) Optimization of dynamic plant nitrogen uptake, using apriori information of plant nitrogen content. Biometr J 39(6):707–718

    Article  Google Scholar 

  • Vold A, Bakken LR, Uhlen G, Vatn A (1999a) Use of data from long-term fertilizer experiments to model plant nitrogen uptake. Nutr Cycl Agroecosyst 55(3):197–206

    Article  CAS  Google Scholar 

  • Vold A, Breland TA, Soreng JS (1999b) Multiresponse estimation of parameter values in models of soil carbon and nitrogen dynamics. J Agric Biol Environ Stat 4(3):290–309

    Article  Google Scholar 

  • Yin RK (2009) Case study research. Design and methods, 4th edn. Sage Publications, Thousand Oaks

    Google Scholar 

Download references

Acknowledgments

We greatly appreciate the field and lab assistance provided by Trygve Fredriksen and Karen Adler, programming aid of Lars Molstad and COUP simulations by Lars Egil Haugen. Gratitude is given to the farmers Gunder Skiaker and Benedicte Aschjem for their availability. Thanks to Rosa Goodman and Joel Millward-Hopkins for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Kynding Borgen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgen, S.K., Lunde, H.W., Bakken, L.R. et al. Nitrogen dynamics in stockless organic clover–grass and cereal rotations. Nutr Cycl Agroecosyst 92, 363–378 (2012). https://doi.org/10.1007/s10705-012-9495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-012-9495-z

Keywords

Navigation