Skip to main content

Advertisement

Log in

Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75–310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambus, P. and Christenson, S.: 1994, ‘Measurement of N2O emission from a fertilized grassland: An analysis of spatial variability’, J. Geophys. Res. 99, 16549–16555.

    Article  Google Scholar 

  • Aulakh, M. S., Rennie, D. A., and Paul, E. A.: 1984, ‘Gaseous nitrogen losses from soils under zero-till as compared with conventional-till management systems’, J. Environ. Qual. 13, 130–136.

    Google Scholar 

  • Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: 2002, ‘Modeling global annual N2O and NO emissions from fertilized fields’, Global Biogeochem. Cycles 16(4), doi:10.1029/2001GB001812.

  • Bowman, R. A. and Focht, D. D.: 1974, ‘The influence of glucose and nitrate concentrations upon denitrification rates in a sandy soil’, Soil Biol. Biochem. 6, 297–301.

    Article  Google Scholar 

  • Bremner, J. M. and Shaw, K.: 1958, ‘Denitrification in soil. II. Factors affecting denitrification’, J. Agric. Sci. 51, 40–52.

    Google Scholar 

  • Burford, J. R. and Bremner, J. M.: 1975, ‘Relationships between denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter’, Soil Biol. Biochem. 7, 389–394.

    Article  Google Scholar 

  • Cai, Z., Sawamoto, S., Li, C., Kang, G., Boonjawat, J., Mosier, A., and Wassmann, R.: 2003, ‘Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems’, Global Biogeochem. Cycles. 17(4), doi:10.1029/2003GB002046.

  • Christensen, S.: 1983, ‘Nitrous oxide emission from a soil under permanent grass: Seasonal and dismal fluctuations as influenced by manuring and fertilization’, Soil Biol. Biochem. 15, 531–536.

    Article  Google Scholar 

  • Christensen, S., Simkins, S., and Tiedje, J. M.: 1990, ‘Spatial variation in denitrification: Dependency of activity centers on the soil environment’, Soil Sci. Soc. Am. J. 54, 1608–1613.

    Google Scholar 

  • Clayton, H., McTaggart, I. P., Parker, J., Swan, L., and Smith, K. A.: 1997, ‘Nitrous oxide emissions from fertilized grassland: A 2-year study of the effects of N fertilizer form and environmental conditions’, Biol. Fert. Soils 25, 252–260.

    Article  Google Scholar 

  • Conrad, R.: 1996, ‘Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, N2O and NO)’, Microbiol. Rev. 60, 609–640.

    PubMed  Google Scholar 

  • Conservation Technology Information Center.: 1999, National Survey of Conservation Tillage Practices. (Conservation Tillage Information Center, West Lafayette, IN).

  • Conservation Technology Information Center.: 2002, National Crop Residue Management Survey (www.ctic.purdue.edu). (Conservation Tillage Information Center, West Lafayette, IN).

  • Crill, P., Keller, M., Weitz, A., Grauel, B., and Veldkamp, E.: 2000, ‘ Intensive field measurements of N2O emissions from a tropical agricultural soil’, Global Biogeochem. Cycles 14, 85–96.

    Article  Google Scholar 

  • Dong, Y. S., Scharffe, D., Domroes, M., Qi, Y. C., and Zhang, S.: 2000, ‘N2O emissions from agricultural soils in the North China Plain: The effect of chemical fertilizer and organic manure’, J. Environ. Sci. 12, 463–468.

    Google Scholar 

  • Doran, J. W.: 1980, ‘Soil microbial and biochemical changes associated with reduced tillage’, Soil Sci. Soc. Am. J. 44, 765–771.

    Google Scholar 

  • Duxbury, J. M., Bouldin, D. R., Terry, R. E., and Tat, R. L.: 1982, ‘Emissions of nitrous oxide from soils’, Nature 298, 462–464.

    Article  Google Scholar 

  • Federer, C. A. and Klemedtsson, L.: 1988, ‘Some factors limiting denitrification in slurries of acid forest soils’, Scand. J. For. Res. 3, 425–435.

    Google Scholar 

  • Flessa, H., Dorsch, P., and Beese, F.: 1995, ‘Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany’, J. Geophy. Res. 100, 23115–23124.

    Article  Google Scholar 

  • Flessa, H., Dorsch, P., Beese, F., Konig, H., and Bouwman, A. F.: 1996, ‘Influece of cattle wastes on nitrous oxide and methane fluxes in pasture land’, J. Environ. Qual. 25, 1366–1370.

    Google Scholar 

  • Flessa, H., Wild, U., Klemisch, M., and Pfadenhauer, J.: 1998, ‘Nitrous oxide and methane fluxes from organic soils under agriculture’, Eur. J. Soil Sci. 49, 327–335.

    Article  Google Scholar 

  • Gollehon, N., Caswell, M., Ribaudo, M., Kellogg, R., Lander, C., and Letson, C.: 2001, Confined Animal Production and Manure Nutrients. Resource Economics Division, Economic Research Service, U. S. Department of Agriculture. Agriculture Information Bulletin No. 771. 39 pp.

  • Goodroad, L. L. and Keeney, D. R.: 1984, ‘Nitrous oxide emission from forest, marsh, and prairie ecosystems’, J. Environ. Qual. 13, 448–452.

    Google Scholar 

  • Grace, P. R.: 1996, ‘The Waite Permanent Rotation Trial’ in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models Using Existing, Long-Term Datasets, NATO ASI Series I, Vol. 38, Springer-Verlag, Heidelberg, pp. 335–340.

    Google Scholar 

  • Grant, B., Smith, W. N., Desjardins, R., Lemkc, R., and Li, C.: 2004, ‘Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada’, Clim. Change 65, 315–332.

    Article  Google Scholar 

  • Hao, X., Chang, C., Carefoot, J. M., Janzen, H. H., and Ellert, B. H.: 2001, ‘Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management’, Nutr. Cycle Agroecosys. 60, 1–8.

    Article  Google Scholar 

  • Harrison, R. M., Yamulki, S., Goulding, K. W. T., and Webster, C. P.: 1995, ‘Effect of fertilizer application on NO and N2O fluxes from agricultural fields’, J. Geophys. Res. 100, 25923-25931.

    Article  Google Scholar 

  • Jenkinson, D.: 1991, ‘The Rothamsted long-term experiments: Are they still of use?’, Agron. J. 83, 2–10.

    Google Scholar 

  • Jin, X. and Gruber, N.: 2003, ‘Offsetting the radiative benefit of ocean iron fertilization by enhancing N2O emissions’, Geophys. Res. Lett. 30(24), 2249, doi:10.1029/2003/GL018458.

    Article  Google Scholar 

  • Khalil, M. I., Rosenani, A. B., Van Cleemput, O., Fauziah, C. I., and Shamshuddin, J.: 2002, ‘Nitrous oxide emissions from an ultisol of the humid tropics under maize-groundnut rotation’, J. Environ. Qual. 31, 1071–1078.

    PubMed  Google Scholar 

  • Klingensmith, K. M.: 1987, ‘Denitrification in floodplain successional soils of the Tanana River in interior Alaska’, Agroborealis 19, 39–42.

    Google Scholar 

  • Körchens, M. and Müller, A.: 1996, ‘The static experiment at Bad Lauchstädt, Germany’, in Powlson, D. S., Smith, P., and Smith, J. U. (eds.), Evaluation of Soil Organic Matter Models Using Existing, Long-Term Datasets, NATO ASI Series I, Vol. 38, Springer-Verlag, Heidelberg, pp. 369-376.

    Google Scholar 

  • Lackner, K. S.: 2003, ‘A guide to CO2 sequestration’, Science 300, 1677–1678.

    Article  PubMed  Google Scholar 

  • Lal, R., Follett, R. F., Kimble, J. M., and Cole, C. V.: 1999, ‘Management of U. S. cropland to sequester carbon in soil’, J. Soil Water Conserv. 54, 374–381.

    Google Scholar 

  • Larcher, W.: 1995, Physiological Plant Ecology, 3{rd} Edn., Springer, Berlin, 506 pp.

    Google Scholar 

  • Leffelaar, P. A. and Wessel, W. W.: 1988, ‘Denitrification in a homogeneous, closed system: experiment and simulation’, Soil Sci. 146, 335–349.

    Google Scholar 

  • Li, C.: 1995, ‘Impact of agricultural practices on soil C storage and N2O emissions in 6 states in the U.S.’, in Lal, R., Kimble, J., Levine, E., and Stewart, B. A. (eds.), Soil Management and Greenhouse Effect, Lewis Publishers, Boca Raton FL, pp. 101–112.

    Google Scholar 

  • Li, C.: 2000, ‘Modeling trace gas emissions from agricultural ecosystems’, Nutr. Cycl. Agroecosys. 58, 259–276.

    Article  Google Scholar 

  • Li, C., Frolking, S., and Frolking, T. A.: 1992, ‘A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity’, J. Geophy. Res. 97, 9759–9776.

    Google Scholar 

  • Li, C., Frolking, S., and Harriss, R. C.: 1994, ‘Modeling carbon biogeochemistry in agricultural soils’, Global Biogeochem. Cycles 8, 237–254.

    Article  Google Scholar 

  • Li, C., Narayanan, V., and Harriss, R.: 1996, ‘Model estimates of nitrous oxide emissions from agricultural lands in the United States’, Global Biogeochem. Cycles 10, 297–306.

    Article  Google Scholar 

  • Li, C., Qiu, J. J., Frolking, S., Xiao, X., Salas, W., Moore, B., Boles, S., Huang, Y., and Sass, R.: 2002, ‘Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980–2000’, Geophys. Res. Lett. 29(20), doi:10.1029/2002GL015370.

  • Li, C., Zhuang, Y. H., Frolking, S., Galloway, J. N., Harriss, R. C., Moore, B., Schimel, D., and Wang, X. K.: 2003, ‘Modeling soil organic carbon change in croplands of China’, Ecol. Appl. 13, 327–336.

    Google Scholar 

  • Lin, X.: 1998, ‘Status and management of soil organic matter in China’, in Shen, S. (ed.), Soil Fertility of China, Chinese Agricultural Press, Beijing, pp. 111–159 (in Chinese).

    Google Scholar 

  • Marland, G., West, T. O., Schlamadinger, B., and Canella, L.: 2003, ‘Managing soil organic carbon in agriculture: The net effect on greenhouse gas emissions’, Tellus 55B, 613–621.

    Google Scholar 

  • Melillo, J. M., Aber, J. D., Steudler, P. A., and Schimel, J. P.: 1983, ‘Denitrification potentials in a successional sequence of northern hardwood forest stands’, in Hallberg, R. (ed.), Environmental Biogeochemistry, Ecol. Bull. (Stockholm) 35, 217–228.

  • Mosier, A., Schimel, D., Valentine, D., Bronson, K., and Parton, W.: 1991, ‘Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands’, Nature 350, 330–332.

    Article  Google Scholar 

  • Mosier, A. R., Stillwell, M., Parton, W. J., and Woodmansee, R. G.: 1981, ‘Nitrous oxide emissions from a native shortgrass prairie’, Soil Sci. Soc. Am. J. 45, 617–619.

    Google Scholar 

  • Müller, M. M., Sundman, V., and Skujins, J.: 1980, ‘Denitrification in low pH spodosols and peats determined with the acetylene inhibition method’, Appl. Environ. Microbiol. 40, 235-239.

    Google Scholar 

  • Mummey, D. L., Smith, J. L., and Bluhm, G.: 1998, ‘Assessment of alternative soil management practices on N2O emissions from US agriculture’, Agric., Ecosys. Environ. 70, 79–87.

    Google Scholar 

  • Odell, R. T., Melsted, S. W., and Walker, W. M.: 1984, ‘Changes in organic carbon and nitrogen of morrow plot soils under different treatments, 1904–1973’, Soil Sci. 137, 160–171.

    Google Scholar 

  • Pang, P. C. K. and Cho, C. M.: 1984, ‘Oxygen consumption and denitrification activity of a conifer forest soil profile’, Soil Sci. Soc. Am. J. 48, 393–399.

    Google Scholar 

  • Papen, H. and Butterbach-Bahl, K.: 1999, ‘Three years continuous record of N-trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: I. N2O-emissions’, J. Geophys. Res. 104, 18487–18503

    Article  Google Scholar 

  • Pluth, D. J. and Nommik, H.: 1981, ‘Potential denitrification affected by nitrogen source of a previous fertilization of an acid forest soil from Central Sweden’, Acta Agric. Scand. 31, 235–241.

    Google Scholar 

  • Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y., and Solomon, S.: 2001, ‘Radiative forcing of climate change’, in Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskel, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp. 350–416.

  • Robertson, G. P. and Tiedje, J. M.: 1987, ‘Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes’, Soil Biol. Biochem. 19, 187–193.

    Article  Google Scholar 

  • Robertson, G. P., Paul, E., and Harwood, R. R.: 2000, ‘Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere’, Science 289, 1922–1925.

    Article  PubMed  Google Scholar 

  • Saggar, S., Andrew, R. M., Tate, K. R., Hedley, C. B., Rodda, N. J., and Townsend, J. A.: 2004, ‘Modelling nitrous oxide emissions from dairy-grazed pastures’, Nutr. Cycling Agroecosys. 68, 243–255.

    Article  Google Scholar 

  • Sahrawat, K. L. and Keeney, D. R.: 1986, ‘Nitrous oxide emission from soils’, Adv. Soil. Sci. 4, 103–147.

    Google Scholar 

  • Six, J., Ogle, S. M., Breidt, F. J., Conant, R. T., Mosier, A. R., and Paustian, K.: 2004, ‘The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term’, Global Change Biol. 10, 155–160.

    Article  Google Scholar 

  • Smith, P., Smith, J. U., Powlson, D. S., Arah, J. R. M., Chertov, O. G., Coleman, K., Franko, U., Frolking, S., Gunnewick, H. K., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M., and Whitmore, A. P.: 1997, ‘A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments’, Geoderma 81, 153–225.

    Article  Google Scholar 

  • Smith, P., Goulding, K. W., Smith, K. A., Powlson, D. S., Smith, J. U., Falloon, P., and Coleman, K.: 2001, ‘Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential’, Nutr. Cycling Agroecosys. 60, 237–252.

    Article  Google Scholar 

  • Smith, W. N., Desjardins, R. L., Grant, B., Li, C., Lemke, R., Rochette, P., Corre, M. D., and Pennock, D.: 2002, ‘Testing the DNDC model using N2O emissions at two experimental sites in Canada’, Can. J. Soil Sci. 82, 365–374.

    Google Scholar 

  • Stanford, G., Vander Pol, R. A., and Dzienia, S.: 1975, ‘Denitrification rates in relation to total and extractable soil carbon’, Soil Sci. Soc. Am. Proc. 39, 284–289.

    Google Scholar 

  • Terry, R. E., Tate, R. L., and Ducbury, J. M.: 1981, ‘Nitrous oxide emissions from drained, cultivated organic soils of south Florida’, J. Air Pollut. Control Assoc. 31, 1173–1176.

    Google Scholar 

  • Terry, R. E.: 1986, ‘Nitrogen transformations in histosols’, in Chen, Y., and Avnimelech, Y. (eds.), The Role of Organic Matter in Modern Agriculture, Martinus Nijhoff Publishers, Dordrecht, Netherlands, pp. 55–70.

    Google Scholar 

  • Thomson, P. E., Parker, J. P., Arah, J. R. M., Clayton, H., and Smith, K. A.: 1997, ‘Automated soil monolith-flux chamber system for the study of trace gas fluxes’, Soil Sci. Soc. Am. J. 61, 1323–1330.

    Google Scholar 

  • U.S.D.A. (United States Department of Agriculture): 1992, Supp. to the Morrow plots: A century of Learning, Bull. No. 775, Agriculture Experiment Station, University of Illinois, Champaign-Urbana, IL.

  • U.S.D.O.E. (United States Department of Energy): 1999, Carbon Sequestration: Research and Development. Office of Science, Office of Fossil Energy, U.S. Department of Energy, Washington, DC.

  • Velthof, G. L., Kuikman, P. J., and Oenema, O.: 2002. ‘Nitrous oxide emission from soils amended with crop residues’, Nutr. Cycl. Agroecosys. 62, 249–261.

    Article  Google Scholar 

  • Vinther, F. P.: 1992, ‘Measured and simulated denitrification activity in a cropped sandy and loamy soil’, Biol. Fert. Soils 14, 43–48.

    Article  Google Scholar 

  • West, T. O. and Marland, G.: 2002, ‘A synthesis of carbon seqeuestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States’, Agric. Ecosys. Environ. 91, 217–232.

    Article  Google Scholar 

  • Wever, H., Mussen, S., and Merckx, R.: 2002, ‘Dynamics of trace gas production following compost and NO3 amendments to soil at different initial TOC/NO3 ratios’, Soil Biol. Biochem. 34, 1583–1591.

    Article  Google Scholar 

  • Xuri, X., Wang, M., and Wang, Y.: 2003, ‘Using a modified DNDC model to estimate N2O fluxes from semi-arid grassland in China’, Soil Biol. Biochem. 35, 615–620.

    Article  Google Scholar 

  • Yamulki, S., Wolf, I., Bol, R., Veldcamp, E., Grant, B., Brumme, R., and Jarvis, S.: 2000, ‘Effects of dung and urine amenedments on the isotopic content of N2O released from grasslands’, Rapid Commun. Mass Spectr. 14, 1356–1360.

    Article  Google Scholar 

  • Zhang, B.: 2000, ‘Severe status of agricultural eco-environment in China’, China News, 6 June 2000 (in Chinese).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Frolking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Frolking, S. & Butterbach-Bahl, K. Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Climatic Change 72, 321–338 (2005). https://doi.org/10.1007/s10584-005-6791-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-6791-5

Keywords

Navigation