Skip to main content
Log in

Dangerous visions: a review of visual antipredator strategies in spiders

  • Ideas & Perspectives
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Many animals use visual traits as a predator defence. Understanding these visual traits from the perspective of predators is critical in generating new insights about predator–prey interactions. In this paper, we propose a novel framework to support the study of strategies that exploit the visual system of predators. With spiders as our model taxon, we contextualise these strategies using two orthogonal axes. The first axis represents strategies using different degrees of conspicuousness to avoid detection or recognition of the spider and deter predator attacks. The second axis represents the degree of honesty of the visual signal. We explore these issues with reference to the three main vision parameters: spectral sensitivity, visual acuity, and temporal resolution, as well as recent tools to study it, including multispectral digital imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Bonte D, Maelfait J-P (2004) Colour variation and crypsis in relation to habitat selection in the males of the crab spider Xysticus sabulosus (Hahn, 1832)(Araneae: Thomisidae). Belg J Zool 134:3–7

    Google Scholar 

  • Brandley N, Johnson M, Johnsen S (2016) Aposematic signals in North American black widows are more conspicuous to predators than to prey. Behav Ecol 27:1104–1112

    Article  Google Scholar 

  • Bruce MJ, Heiling AM, Herberstein ME (2005) Spider signals: are web decorations visible to birds and bees? Biol Let 1:299–302

    Article  Google Scholar 

  • Cardoso GC, Gomes ACR (2015) Using reflectance ratios to study animal coloration. Evol Biol 42:387–394

    Article  Google Scholar 

  • Caro TM (1995) Pursuit-deterrence revisited. Trends Ecol Evol 10:500–503

    Article  CAS  PubMed  Google Scholar 

  • Caro T (2014) Antipredator deception in terrestrial vertebrates. Curr Zool 60:16–25

    Article  Google Scholar 

  • Caro T, Ruxton G (2019) Aposematism: unpacking the defences. Trends Ecol Evol 34:595–604

    Article  PubMed  Google Scholar 

  • Caves EM, Johnsen S (2017) AcuityView: an r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol Evol 9:793–797

    Article  Google Scholar 

  • Caves EM, Brandley NC, Johnsen S (2018) Visual acuity and the evolution of signals. Trends Ecol Evol 33:358–372

    Article  PubMed  Google Scholar 

  • Clark DL, Roberts JA, Rector M, Uetz GW (2011) Spectral reflectance and communication in the wolf spider, Schizocosa ocreata (Hentz): simultaneous crypsis and background contrast in visual signals. Behav Ecol Sociobiol 65:1237–1247

    Article  Google Scholar 

  • Cloudsley-Thompson JL (1995) A review of the anti-predator devices of spiders. Bull Br Arachnol Soc 10:81–96

    Google Scholar 

  • Connelly BL, Certo ST, Ireland RD, Reutzel CR (2011) Signaling theory: a review and assessment. J Manag 37:39–67

    Google Scholar 

  • Cooper WE (2011) Pursuit deterrence, predation risk, and escape in the lizard Callisaurus draconoides. Behav Ecol Sociobiol 65:1833

    Article  Google Scholar 

  • Corcobado G, Herberstein ME, Pekár S (2016) The role of ultraviolet colour in the assessment of mimetic accuracy between Batesian mimics and their models: a case study using ant-mimicking spiders. Sci Nat 103:90

    Article  CAS  Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen & Co., Ltd., London

    Google Scholar 

  • Cox CL, Chung AK, Blackwell C, Davis MM, Gulsby M, Islam H, Miller N, Lambert C, Lewis O, Rector IV, Walsh M, Yamamoto AD, Davis Rabosky AR (2021) Tactile stimuli induce deimatic antipredator displays in ringneck snakes. Ethology 127:465–474

    Article  Google Scholar 

  • Cronin TW, Johnsen S, Marshall J, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Cross FR, Jackson RR (2018) When it looks and walks like an ant. Learn Behav 46:103–104

    Article  PubMed  Google Scholar 

  • Croucher PJP, Oxford GS, Lam A, Gillespie RG (2011) Stabilizing selection maintains exuberant colour polymorphism in the spider Theridion californicum (Araneae, Theridiidae). Mol Ecol 20:206–218

    Article  CAS  PubMed  Google Scholar 

  • Cushing PE (2012) Spider-ant associations: an updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche J Entomol 2012:1–23

    Article  Google Scholar 

  • Cuthill IC, Bennett AT (1993) Mimicry and the eye of the beholder. Proc R Soc Lond B Biol Sci 253:203–204

    Article  Google Scholar 

  • Defrize J, Théry M, Casas J (2010) Background colour matching by a crab spider in the field: a community sensory ecology perspective. J Exp Biol 213:1425–1435

    Article  PubMed  Google Scholar 

  • Derrington AM, Allen HA, Delicato LS (2004) Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol 55:181–205

    Article  PubMed  Google Scholar 

  • Dittrigh W, Gilbert F, Green P, Mcgregor P, Grewcock D (1993) Imperfect mimicry: a Pigeon’s perspective. Proc R Soc Lond B Biol Sci 251:195–200

    Article  Google Scholar 

  • Donner K (2021) Temporal vision: measures, mechanisms and meaning. J Exp Biol 224:jeb222679

    Article  PubMed  PubMed Central  Google Scholar 

  • Durkee CA, Weiss MR, Uma DB (2011) Ant mimicry lessens predation on a North American jumping spider by larger salticid spiders. Environ Entomol 40:1223–1231

    Article  PubMed  Google Scholar 

  • Eberhard W (2003) Substitution of silk stabilimenta for egg sacs by Allocyclosa bifurca (Araneae: Araneidae) suggests that silk stabilimenta function as camouflage devices. Behaviour 140:847–868

    Article  Google Scholar 

  • Eberhard W (2020) Spider webs. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Edwards G (1984) Mimicry of velvet ants (Hymenoptera: Mutillidae) by jumping spiders (Araneae: Salticidae). Peckhamia 2:46–49

    Google Scholar 

  • Eisner T, Nowicki S (1983) Spider web protection through visual advertisement: role of the Stabilimentum. Science 219:185–187

    Article  CAS  PubMed  Google Scholar 

  • Elias DO, Land BRM, Andrew C, Hoy RR (2006) Measuring and quantifying dynamic visual signals in jumping spiders. J Comp Physiol A 192:799–800

    Article  Google Scholar 

  • Figon F, Casas J (2018) Morphological and physiological colour changes in the animal kingdom. eLS. John Wiley & Sons, Ltd, Chichester, pp 1–11

    Google Scholar 

  • Foelix RF (2011) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Foelix RF, Erb B, Hill DE (2013) Structural colors in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 333–347

    Chapter  Google Scholar 

  • Franklin AM, Rankin KJ, Ospina Rozo L, Medina I, Garcia JE, Ng L, Dong C, Wang LY, Aulsebrook AE, Stuart-Fox D (2022) Cracks in the mirror hypothesis: high specularity does not reduce detection or predation risk. Funct Ecol 36:239–248

    Article  Google Scholar 

  • Gall BG, Spivey KL, Chapman TL, Delph RJ, Brodie ED, Wilson JS (2018) The indestructible insect: velvet ants from across the United States avoid predation by representatives from all major tetrapod clades. Ecol Evol 8:5852–5862

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawryszewski FM (2014) Evidence suggests that modified setae of the crab spiders Stephanopis spp. fasten debris from the background. Zoomorphology 133:205–215

    Article  Google Scholar 

  • Gawryszewski FM (2017) Anti-predator strategies. In: Viera C, Gonzaga MO (eds) Behaviour and ecology of spiders: contributions from the neotropical region. Springer, Basel, pp 397–415

    Chapter  Google Scholar 

  • Gawryszewski FM (2018) Color vision models: Some simulations, a general n-dimensional model, and the colourvision R package. Ecol Evol 8:8159–8170

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzaga MO, Vasconcellos-Neto J (2005) Testing the functions of detritus stabilimenta in webs of Cyclosa fililineata and Cyclosa morretes (Araneae: Araneidae): Do they attract prey or reduce the risk of predation? Ethology 111:479–491

    Article  Google Scholar 

  • Hawes TC (2017) Rapid colour change by the spider, Tylorida striata (Thorell, 1877) (Araneae: Tetragnathidae). Raffles Bull Zool 65:616–622

    Google Scholar 

  • Hemmi JM, Marshall J, Pix W, Vorobyev M, Zeil J (2006) The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. J Exp Biol 209:4140–4153

    Article  PubMed  Google Scholar 

  • Henschel JR (1998) Predation on social and solitary individuals of the spider Stegodyphus dumicola (Araneae, Eresidae). J Arachnol 26:61–69

    Google Scholar 

  • Holmes GG, Delferrière E, Rowe C, Troscianko J, Skelhorn J (2018) Testing the feasibility of the startle-first route to deimatism. Sci Rep 8:10737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • How MJ, Zanker JM (2014) Motion camouflage induced by zebra stripes. Zoology 117:163–170

    Article  PubMed  Google Scholar 

  • How MJ, Gonzales D, Irwin A, Caro T (2020) Zebra stripes, tabanid biting flies and the aperture effect. Proc R Soc B 287:20201521

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiung B-K, Blackledge TA, Shawkey MD (2015) Spiders do have melanin after all. J Exp Biol 218:3632–3635

    PubMed  Google Scholar 

  • Hsiung B-K, Justyn NM, Blackledge TA, Shawkey MD (2017) Spiders have rich pigmentary and structural colour palettes. J Exp Biol 220:1975–1983

    Article  PubMed  Google Scholar 

  • Hsiung B-K, Shawkey MD, Blackledge TA (2019) Color production mechanisms in spiders. J Arachnol 47:165–180

    Article  Google Scholar 

  • Hughes AE, Jones C, Joshi K, Tolhurst DJ (2017) Diverted by dazzle: perceived movement direction is biased by target pattern orientation. Proc R Soc B Biol Sci 284:20170015

    Article  Google Scholar 

  • Hurni-Cranston T, Hill DE (2018) Notes on the jumping spider Myrmarachne exasperans (Araneae: Salticidae: Astioida: Myrmarachnini) in Bali, a possible mimic of parasitoid wasps (Hymenoptera: Ichneumonidae: Cryptini: Goryphus). Peckhamia 176:1–26

    Google Scholar 

  • Ingram AL, Deparis O, Boulenguez J, Kennaway G, Berthier S, Parker AR (2011) Structural origin of the green iridescence on the chelicerae of the red-backed jumping spider, Phidippus johnsoni (Salticidae: Araneae). Arthropod Struct Dev 40:21–25

    Article  CAS  PubMed  Google Scholar 

  • Insausti TC, Casas J (2008) The functional morphology of color changing in a spider: development of ommochrome pigment granules. J Exp Biol 211:780–789

    Article  PubMed  Google Scholar 

  • Insausti TC, Casas J (2009) Turnover of pigment granules: cyclic catabolism and anabolism of ommochromes within epidermal cells. Tissue Cell 41:421–429

    Article  CAS  PubMed  Google Scholar 

  • Insausti TC, Defrize J, Lazzari CR, Casas J (2012) Visual fields and eye morphology support color vision in a color-changing crab-spider. Arthropod Struct Dev 41:155–163

    Article  PubMed  Google Scholar 

  • Jackson RR, Cross FR (2013) A cognitive perspective on aggressive mimicry. J Zool 290:161–171

    Article  Google Scholar 

  • Johansson G (1975) Visual motion perception. Sci Am 232:76–89

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Kelley JL (2014) Animal visual illusion and confusion: the importance of a perceptual perspective. Behav Ecol 25:450–463

    Article  Google Scholar 

  • Kikuchi DW, Pfennig DW (2013) Imperfect mimicry and the limits of natural selection. Q Rev Biol 88:297–315

    Article  PubMed  Google Scholar 

  • Kinchla RA, Allan LG (1969) A theory of visual movement perception. Psychol Rev 76:537–558

    Article  CAS  PubMed  Google Scholar 

  • Kjernsmo K, Merilaita S (2013) Eyespots divert attacks by fish. Proc R Soc B Biol Sci 280:20131458

    Article  Google Scholar 

  • Kjernsmo K, Whitney HM, Scott-Samuel NE, Hall JR, Knowles H, Talas L, Cuthill IC (2020) Iridescence as camouflage. Curr Biol 30:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodandaramaiah U, Palathingal S, Bindu Kurup G, Murali G (2020) What makes motion dazzle markings effective against predation? Behav Ecol 31:43–53

    Google Scholar 

  • Kuntner M, Gregorič M, Cheng R-C, Li D (2016) Leaf masquerade in an orb web spider. J Arachnol 44:397–400

    Article  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42:147–177

    Article  CAS  PubMed  Google Scholar 

  • Li D, Lim ML, Seah WK, Tay SL (2004) Prey attraction as a possible function of discoid stabilimenta of juvenile orb-spinning spiders. Anim Behav 68:629–635

    Article  Google Scholar 

  • Lim MLM, Li D (2007) Effects of age and feeding history on structure-based UV ornaments of a jumping spider (Araneae: Salticidae). Proc R Soc B Biol Sci 274:569–575

    Article  Google Scholar 

  • Lim MLM, Li D (2013) UV-green iridescence predicts male quality during jumping spider contests. PLoS ONE 8:e59774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M-H, Blamires SJ, Liao C-P, Tso IM (2014) Evidence of bird dropping masquerading by a spider to avoid predators. Sci Rep 4:1–5

    Google Scholar 

  • Ma N, Yu L, Gong D, Hua Z, Zeng H, Chen L, Mao A, Chen Z, Cai R, Ma Y, Zhang Z, Li D, Luo J, Zhang S (2020) Detritus decorations as the extended phenotype deflect avian predator attack in an orb-web spider. Funct Ecol 34:2110–2119

    Article  Google Scholar 

  • Maia R, Gruson H, Endler JA, White TE (2019) pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol Evol 10:1097–1107

    Article  Google Scholar 

  • Meadows MG, Butler MW, Morehouse NI, Taylor LA, Toomey MB, Mcgraw KJ, Rutowski RL (2009) Iridescence: views from many angles. J R Soc Interface 6:S107–S113

    Article  PubMed  PubMed Central  Google Scholar 

  • Messas YF, Souza HS, Gonzaga MO, Vasconcellos-Neto J (2014) Spatial distribution and substrate selection by the orb-weaver spider Eustala perfida Mello-Leitão, 1947 (Araneae: Araneidae). J Nat Hist 48:2645–2660

    Article  Google Scholar 

  • Nakata K (2009) To be or not to be conspicuous: the effects of prey availability and predator risk on spider’s web decoration building. Anim Behav 78:1255–1260

    Article  Google Scholar 

  • Nakata K (2021) Relationship between body colour and microhabitat breadth in an orb-web spider. Biol J Lin Soc 134(3):679–684

    Article  Google Scholar 

  • Nakata K, Shigemiya Y (2015) Body-colour variation in an orb-web spider and its effect on predation success. Biol J Lin Soc 116:954–963

    Article  Google Scholar 

  • Nelson XJ, Card A (2016) Locomotory mimicry in ant-like spiders. Behav Ecol 27:700–707

    Article  Google Scholar 

  • Nelson XJ, Jackson RR (2007) Vision-based ability of an ant-mimicking jumping spider to discriminate between models, conspecific individuals and prey. Insectes Soc 54:1–4

    Article  Google Scholar 

  • Nelson XJ, Jackson RR (2011) Flexible use of anti-predator defences. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 99–126

    Chapter  Google Scholar 

  • Nelson XJ, Jackson RR, Li D, Barrion AT, Edwards GB (2006) Innate aversion to ants (Hymenoptera: Formicidae) and ant mimics: experimental findings from mantises (Mantodea). Biol J Lin Soc 88:23–32

    Article  Google Scholar 

  • Nentwig W (1985) A mimicry complex between mutillid wasps (Hymenoptera: Mutillidae) and spiders (Araneae). Stud Neotrop Fauna Environ 20:113–116

    Article  Google Scholar 

  • Nentwig W, Kuhn-Nentwig L (2013) Spider venoms potentially lethal to humans. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 253–264

    Chapter  Google Scholar 

  • Norris KS, Lowe CH (1964) An analysis of background color-matching in amphibians and reptiles. Ecology 45:565–580

    Article  Google Scholar 

  • Nyffeler M, Birkhofer K (2017) An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci Nat 104:1–12

    Article  CAS  Google Scholar 

  • Oxford GS, Gillespie RG (1998) Evolution and ecology of spider coloration. Annu Rev Entomol 43:619–643

    Article  CAS  PubMed  Google Scholar 

  • Oxford GS, Gillespie RG (2001) Portraits of evolution: Studies of coloration in hawaiian spiders. Bioscience 51:521–528

    Article  Google Scholar 

  • Painting CJ, Rajamohan G, Chen Z, Zeng H, Li D (2016) It takes two peaks to tango: the importance of UVB and UVA in sexual signalling in jumping spiders. Anim Behav 113:137–146

    Article  Google Scholar 

  • Pekár S (2014) Comparative analysis of passive defences in spiders (Araneae). J Anim Ecol 83:779–790

    Article  PubMed  Google Scholar 

  • Pekár S, Jarab M (2011) Assessment of color and behavioral resemblance to models by inaccurate myrmecomorphic spiders (Araneae). Invertebr Biol 130:83–90

    Article  Google Scholar 

  • Pekár S, Křál J (2002) Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): how Zodarion deceives ants. Biol J Lin Soc 75:517–532

    Article  Google Scholar 

  • Pekár S, Jarab M, Fromhage L, Herberstein ME (2011) Is the evolution of inaccurate mimicry a result of selection by a suite of predators? A case study using myrmecomorphic spiders. Am Nat 178:124–134

    Article  PubMed  Google Scholar 

  • Peters RA, Clifford CW, Evans CS (2002) Measuring the structure of dynamic visual signals. Anim Behav 64:131–146

    Article  Google Scholar 

  • Poulton EB (1890) The colours of animals: their meaning and use, especially considered in the case of insects. D. Appleton., London

    Google Scholar 

  • Rao D, Mendoza-Cuenca L (2016) The effect of colour polymorphism on thermoregulation in an orb web spider. Sci Nat 103:1–5

    Article  CAS  Google Scholar 

  • Rao D, Webster M, Heiling AM, Bruce MJ, Herberstein ME (2009) The aggregating behaviour of Argiope radon, with special reference to web decorations. J Ethol 27:35–42

    Article  Google Scholar 

  • Renoult JP, Kelber A, Schaefer MH (2015) Colour spaces in ecology and evolutionary biology. Biol Rev 92:292–315

    Article  PubMed  Google Scholar 

  • Riou M, Christidès J-P (2010) Cryptic color change in a crab spider (Misumena vatia): identification and quantification of precursors and ommochrome pigments by HPLC. J Chem Ecol 36:412–423

    Article  CAS  PubMed  Google Scholar 

  • Robinson MH, Robinson B (1970) The stabilimentum of the orb web spider, Argiope argentata: an improbable defence against predators. Can Entomol 102:641–655

    Article  Google Scholar 

  • Robinson MH, Robinson BC (1978) Thermoregulation in orb-web spiders: new descriptions of thermoregulatory postures and experiments on the effects of posture and coloration. Zool J Linn Soc 64:87–102

    Article  Google Scholar 

  • Robledo-Ospina LE, Escobar-Sarria F, Troscianko J, Rao D (2017) Two ways to hide: predator and prey perspectives of disruptive coloration and background matching in jumping spiders. Biol J Lin Soc 122:752–764

    Article  Google Scholar 

  • Robledo-Ospina LE, Morehouse N, Escobar F, Falcón-Brindis A, Jiménez ML, Rao D (2021) Prey colour biases of araneophagic mud-daubing wasps. Anim Behav 172:25–33

    Article  Google Scholar 

  • Rodríguez-Gironés MA, Maldonado M (2020) Detectable but unseen: imperfect crypsis protects crab spiders from predators. Anim Behav 164:83–90

    Article  Google Scholar 

  • Rodríguez-Gironés MA, Ruiz A (2016) toBeeView: a program for simulating the retinal image of visual scenes on nonhuman eyes. Ecol Evol 6:7892–7900

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Morales D, Rico-Gray V, García-Franco JG, Ajuria-Ibarra H, Hernández-Salazar LT, Robledo-Ospina LE, Rao D (2018) Context-dependent crypsis: a prey’s perspective of a color polymorphic predator. Sci Nat 105:1–10

    Article  CAS  Google Scholar 

  • Rouyan A (2019) Scientific nature faking: experimental life sciences in American Print Media and culture, 1900–1914. Interdiscip Stud Lit Environ 27:106–127

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals, and mimicry. Oxford University Press, New York

    Book  Google Scholar 

  • Ruxton GD, Allen WL, Sherratt TN, Speed MP (2018) Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schenberg S, Pereira Lima FA (1978) Venoms of ctenidae. In: Bettini S (ed) Arthropod venoms. Springer, Berlin, pp 217–245

    Chapter  Google Scholar 

  • Scott-Samuel NE, Baddeley R, Palmer CE, Cuthill IC (2011) Dazzle camouflage affects speed perception. PLoS ONE 6:e20233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamble PS, Menda G, Golden JR, Nitzany EI, Walden K, Beatus T, Elias DO, Cohen I, Miles RN, Hoy RR (2016) Airborne acoustic perception by a jumping spider. Curr Biol 26(21):2913–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamble PS, Hoy RR, Cohen I, Beatus T (2017) Walking like an ant: a quantitative and experimental approach to understanding locomotor mimicry in the jumping spider Myrmarachne formicaria. Proc R Soc B Biol Sci 284:20170308

    Article  Google Scholar 

  • Sherratt TN (2002) The evolution of imperfect mimicry. Behav Ecol 13:821–826

    Article  Google Scholar 

  • Sherratt TN (2017) Behavioural ecology: spiders play the imitation game. Curr Biol 27:R1074–R1076

    Article  CAS  PubMed  Google Scholar 

  • Skelhorn J (2015) Masquerade. Curr Biol 25:R643–R644

    Article  CAS  PubMed  Google Scholar 

  • Skelhorn J, Rowland HM, Ruxton GD (2010a) The evolution and ecology of masquerade. Biol J Lin Soc 99:1–8

    Article  Google Scholar 

  • Skelhorn J, Rowland HM, Speed MP, Ruxton GD (2010b) Masquerade: camouflage without crypsis. Science 327:51–51

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Harper D (2003) Animal signals. Oxford University Press, New York

    Google Scholar 

  • Srygley RB (1999) Incorporating motion into investigations of mimicry. Evol Ecol 13:691–708

    Article  Google Scholar 

  • Stevens M, Merilaita S (eds) (2011) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Stevens M (2016) Color change, phenotypic plasticity, and camouflage. Front Ecol Evol 4:51

    Article  Google Scholar 

  • Summers K, Speed MP, Blount JD, Stuckert AMM (2015) Are aposematic signals honest? A review. J Evol Biol 28:1583–1599

    Article  CAS  PubMed  Google Scholar 

  • Tan EJ, Elgar MA (2021) Motion: enhancing signals and concealing cues. Biol Open 10:bio058762

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan EJ, Li D (2009) Detritus decorations of an orb-weaving spider, Cyclosa mulmeinensis (Thorell): for food or camouflage? J Exp Biol 212:1832–1839

    Article  PubMed  Google Scholar 

  • Tan EJ, Seah SWH, Yap L-MYL, Goh PM, Gan W, Liu F, Li D (2010) Why do orb-weaving spiders (Cyclosa ginnaga) decorate their webs with silk spirals and plant detritus? Anim Behav 79:179–186

    Article  Google Scholar 

  • Thayer GH (1909) Concealing coloration in the animal kingdom. Macmillan Co., New York

    Google Scholar 

  • Théry M, Casas J (2002) Predator and prey views of spider camouflage. Nature 415:133–133

    Article  PubMed  Google Scholar 

  • Théry M, Debut M, Gomez D, Casas J (2005) Specific color sensitivities of prey and predator explain camouflage in different visual systems. Behav Ecol 16:25–29

    Article  Google Scholar 

  • Théry M, Insausti TC, Defrize J, Casas J (2011) The multiple disguises of spiders. In: Stevens M, Merilaita S (eds) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge, pp 254–274

    Chapter  Google Scholar 

  • Tolbert W (1975) Predator avoidance behavior and web defensive structures in the orb weavers, Argiope aurantia and Argiope trifasciata (Araneae, Araneidae). Psyche 82:29–52

    Article  Google Scholar 

  • Troscianko J, Stevens M (2015) Image calibration and analysis toolbox: a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol Evol 6:1320–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Troscianko J, Lown AE, Hughes AE, Stevens M (2013) Defeating crypsis: detection and learning of camouflage strategies. PLoS ONE 8:e73733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troscianko J, Skelhorn J, Stevens M (2018) Camouflage strategies interfere differently with observer search images. Proc R Soc B Biol Sci 285:20181386

    Article  Google Scholar 

  • Troscianko J, Nokelainen O, Skelhorn J, Stevens M (2021) Variable crab camouflage patterns defeat search image formation. Commun Biol 4:1–9

    Article  Google Scholar 

  • Tseng L, Tso I-M (2009) A risky defence by a spider using conspicuous decoys resembling itself in appearance. Anim Behav 78:425–431

    Article  Google Scholar 

  • Uetz GW, Hieber CS (1994) Group size and predation risk in colonial web-building spiders: analysis of attack abatement mechanisms. Behav Ecol 5:326–333

    Article  Google Scholar 

  • Uetz GW, Boyle J, Hieber CS, Wilcox RS (2002) Antipredator benefits of group living in colonial web-building spiders: the ‘early warning’ effect. Anim Behav 63:445–452

    Article  Google Scholar 

  • Uma D, Durkee C, Herzner G, Weiss M (2013) Double deception: ant-mimicking spiders elude both visually- and chemically-oriented predators. PLOS ONE 8:e79660

    Article  PubMed  PubMed Central  Google Scholar 

  • Umbers KD, Lehtonen J, Mappes J (2015) Deimatic displays. Curr Biol 25:R58–R59

    Article  CAS  PubMed  Google Scholar 

  • Umbers KD, De Bona S, White TE, Lehtonen J, Mappes J, Endler JA (2017) Deimatism: a neglected component of antipredator defence. Biol Lett 13:20160936

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkonen JK, Vakkila A, Pesari S, Tuominen L, Mappes J (2020) Protective coloration of European vipers throughout the predation sequence. Anim Behav 164:99–104

    Article  Google Scholar 

  • van den Berg CP, Troscianko J, Endler JA, Marshall NJ, Cheney KL (2020) Quantitative colour pattern analysis (QCPA): a comprehensive framework for the analysis of colour patterns in nature. Methods Ecol Evol 11(2):316–332

    Article  Google Scholar 

  • Vasconcellos-Neto J, Messas YF, Da Silva SH, Villanueva-Bonila GA, Romero GQ (2017) Spider–plant interactions: an ecological approach. In: Viera C, Gonzaga MO (eds) Behaviour and ecology of spiders: contributions from the neotropical region. Springer, Cham, pp 165–214

    Chapter  Google Scholar 

  • Veselý P, Dobrovodský J, Fuchs R (2021) Predation by avian predators may have initiated the evolution of myrmecomorph spiders. Sci Rep 11:17266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viera C, Agnarsson I (2017) Parental care and sociality. In: Viera C, Gonzaga MO (eds) Behaviour and ecology of spiders. Springer, Basel, pp 351–381

    Chapter  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc B Biol Sci 265:351–358

    Article  CAS  Google Scholar 

  • Wang B, Yu L, Ma N, Zhang Z, Gong D, Liu R, Li D, Zhang S (2021) Conspicuous cruciform silk decorations deflect avian predator attacks. Integr Zool. https://doi.org/10.1111/1749-4877.12621

    Article  PubMed  Google Scholar 

  • Wilson JS, Jahner JP, Williams KA, Forister ML (2013) Ecological and evolutionary processes drive the origin and maintenance of imperfect mimicry. PLoS ONE 8:e61610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlin J, Kropf C (2013) Rapid colour change in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg, pp 360–370

    Google Scholar 

  • Xavier GM, Brito VLG, Gonzaga MO (2018) Colour matching in an orb-web spider: a twig-masquerading species as seen by potential predators. J Zool 360:48–57

    Article  Google Scholar 

  • Ximenes NG, Gawryszewski FM (2019) Prey and predators perceive orb-web spider conspicuousness differently: evaluating alternative hypotheses for color polymorphism evolution. Curr Zool 65:559–570

    Article  PubMed  Google Scholar 

  • Ximenes NG, Gawryszewski FM (2020) Conspicuous colours in a polymorphic orb-web spider: evidence of predator avoidance but not prey attraction. Anim Behav 169:35–43

    Article  Google Scholar 

  • Yu L, Xu X, Zhang Z, Painting CJ, Yang X, Li D (2021) Masquerading predators deceive prey by aggressively mimicking bird droppings in a crab spider. Curr Zool. https://doi.org/10.1093/cz/zoab060

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanker J, Zeil J (eds) (2001) Book motion vision: computational, neural, and ecoogical constraints. Springer, New York

    Google Scholar 

  • Zhang S, Mao K-K, Lin P-T, Ho C-J, Hung W, Piorkowski D, Liao C-P, Tso I-M (2015) Crypsis via leg clustering: twig masquerading in a spider. R Soc Open Sci 2:150007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Federico Escobar, Nathan Morehouse and Ajay Narendra for their valuable comments on a previous version of the manuscript. We thank two anonymous reviewers for their helpful comments.

Funding

Luis Robledo-Ospina was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT-México 634812/338721) during his PhD program. This research was supported by a CONACyT Ciencia Basica grant (CB-2016-01/285529) to Dinesh Rao.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the conception of the study. Luis E. Robledo-Ospina wrote the first draft of the manuscript and both authors revised the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Dinesh Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

All authors consent to participate.

Consent for publication

All authors approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robledo-Ospina, L.E., Rao, D. Dangerous visions: a review of visual antipredator strategies in spiders. Evol Ecol 36, 163–180 (2022). https://doi.org/10.1007/s10682-022-10156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-022-10156-x

Keywords

Navigation