Skip to main content
Log in

Impact of fear-induced group defense in a Monod–Haldane type prey–predator model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, a predator–prey model with fear-induced group defense and Monod–Haldane functional response is considered. We establish a connection between fear effect and group defense by incorporating anti-predator sensitivity and emphasizing their impact on the dynamics of the model. Our analysis shows that increasing anti-predator sensitivity lowers the threshold for initiating group defense, leading to faster adoption of prey defense strategies. The preliminary results include positivity, boundedness, and persistence. We find that under certain thresholds, anti-predator sensitivity can sustain species persistence; otherwise, predators may face extinction. Changes in anti-predator sensitivity significantly influence system dynamics, notably affecting the quantity and stability of equilibrium points. We provide a comprehensive analysis of the global properties of both boundary and interior equilibrium points. Additionally, the system undergoes Transcritical, Saddle-node and Hopf bifurcation by considering the anti-predator sensitivity as a bifurcation parameter and Bogdanov–Takens bifurcation with respect to the prey birth rate and the anti-predator sensitivity. Numerical simulations support our theoretical findings. Our study highlights the complex interplay of fear effect, group defense, and anti-predator sensitivity in predator–prey dynamics. These results may provide valuable biological insights into predator–prey interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Molla, H., Sarwardi, S., Haque, M.: Dynamics of adding variable prey refuge and an Allee effect to a predator–prey model. Alex. Eng. J. 61(6), 4175–4188 (2022)

    Article  Google Scholar 

  2. Prasad, B., Banerjee, M., Srinivasu, P.D.N.: Dynamics of additional food provided predator–prey system with mutually interfering predators. Math. Biosci. 246(1), 176–190 (2013)

    Article  MathSciNet  Google Scholar 

  3. Souna, F., Lakmeche, A., Djilali, S.: Spatiotemporal patterns in a diffusive predator–prey model with protection zone and predator harvesting. Chaos Solitons Fract. 140, 110180 (2020)

    Article  MathSciNet  Google Scholar 

  4. Ryu, K., Ko, W., Haque, M.: Bifurcation analysis in a predator–prey system with a functional response increasing in both predator and prey densities. Nonlinear Dyn. 94, 1639–1656 (2018)

    Article  Google Scholar 

  5. Colon, C., Claessen, D., Ghil, M.: Bifurcation analysis of an agent-based model for predator–prey interactions. Ecol. Model. 317, 93–106 (2015)

    Article  Google Scholar 

  6. Seo, G., DeAngelis, D.L.: A predator–prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear Sci. 21, 811–833 (2011)

    Article  MathSciNet  Google Scholar 

  7. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97(S45), 5–60 (1965)

    Article  Google Scholar 

  8. Liu, X., Huang, Q.: The dynamics of a harvested predator–prey system with Holling type IV functional response. Biosystems 169–170, 26–39 (2018)

    Article  Google Scholar 

  9. Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10(6), 707–723 (1968)

    Article  Google Scholar 

  10. Freedman, H.I., Wolkowicz, G.S.: Predator–prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48, 493508 (1986)

    Article  MathSciNet  Google Scholar 

  11. Ajraldi, V., Pittavino, M., Venturino, E.: Modeling Herd behavior in population systems. Nonlinear Anal. Real World Appl. 12(4), 2319–2338 (2011)

    Article  MathSciNet  Google Scholar 

  12. Braza, P.A.: Predator–prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl. 13(4), 1837–1843 (2012)

    Article  MathSciNet  Google Scholar 

  13. Xu, C., San, Y., Tong, Z.: Global dynamics of a predator–prey model with defense mechanism for prey. Appl. Math. Lett. 62, 42–48 (2016)

    Article  MathSciNet  Google Scholar 

  14. Bulai, I.M., Venturino, E.: Shape effects on herd behavior in ecological interacting population models. Math. Comput. Simul. 141, 40–55 (2017)

    Article  MathSciNet  Google Scholar 

  15. Salman, S.M., Yousef, A.M., Elsadany, A.A.: Stability, bifurcation analysis and chaos control of a discrete predator–prey system with square root functional response. Chaos Solitons Fract. 93, 20–31 (2016)

    Article  MathSciNet  Google Scholar 

  16. Bi, Z., Liu, S., Ouyang, M.: Three-dimensional pattern dynamics of a fractional predator–prey model with cross-diffusion and herd behavior. Appl. Math. Comput. 421, 126955 (2022)

    MathSciNet  Google Scholar 

  17. Yao, W., Li, X.: Complicate bifurcation behaviors of a discrete predator–prey model with group defense and nonlinear harvesting in prey. Appl. Anal. 102(9), 2567–2582 (2023)

    Article  MathSciNet  Google Scholar 

  18. Li, Q., Zhang, Y., Xiao, Y.: Canard phenomena for a slow-fast predator–prey system with group defense of the prey. J. Math. Anal. Appl. 527(1), 127418 (2023)

    Article  MathSciNet  Google Scholar 

  19. Suleman, A., Ahmed, R., Alshammari, F.S., Shah, N.A.: Dynamic complexity of a slow-fast predator–prey model with herd behavior. AIMS Math. 8(10), 24446–24472 (2023)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., He, M., Li, Z.: Dynamics of a ratio-dependent Leslie–Gower predator–prey model with Allee effect and fear effect. Math. Comput. Simul. 201, 417–439 (2022)

    Article  MathSciNet  Google Scholar 

  21. Chen, M., Xu, Y., Zhao, J.: Turing–Hopf bifurcation analysis in a diffusive ratio-dependent predator–prey model with Allee effect and predator harvesting. Entropy 26(1), 18 (2023)

    Article  Google Scholar 

  22. Wang, J.G., Meng, X.Y., Lv, L.: Stability and bifurcation analysis of a Beddington–DeAngelis prey–predator model with fear effect, prey refuge and harvesting. Int. J. Bifurc. Chaos 33(01), 2350013 (2023)

    Article  MathSciNet  Google Scholar 

  23. Cui, M., Shao, Y., Xue, R.: Dynamic behavior of a predator–prey model with double delays and Beddington–DeAngelis functional response. Axioms 12(1), 73 (2023)

    Article  Google Scholar 

  24. Debnath, S., Majumdar, P., Sarkar, S.: Memory effect on prey–predator dynamics: exploring the role of fear effect, additional food and anti-predator behaviour of prey. J. Comput. Sci. 66, 101929 (2023)

    Article  Google Scholar 

  25. Li, H., Tian, Y.: Dynamic behavior analysis of a feedback control predator–prey model with exponential fear effect and Hassell–Varley functional response. J. Frankl. Inst. 360(4), 3479–3498 (2023)

    Article  MathSciNet  Google Scholar 

  26. Chen, X., Du, Z.: Existence of positive periodic solutions for a neutral delay predator–prey model with Hassell–Varley type functional response and impulse. Qual. Theory Dyn. Syst. 17, 67–80 (2018)

    Article  MathSciNet  Google Scholar 

  27. Taylor, R.J.: Predation. Chapman & Hall, New York (1984)

    Book  Google Scholar 

  28. Lima, S.L.: Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48(1), 25–34 (1998)

    Article  Google Scholar 

  29. Creel, S., Christianson, D.: Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008)

    Article  Google Scholar 

  30. Lima, S.L.: Predators and the breeding bird: behavioural and reproductive flexibility under the risk of predation. Biol. Rev. 84(3), 485–513 (2009)

    Article  Google Scholar 

  31. Maerz, J.C., Panebianco, N.L., Madison, D.M.: Effects of predator chemical cues and behavioral biorhythms on foraging, activity of terrestrial salamanders. J. Chem. Ecol. 27(7), 1333–1344 (2001)

    Article  Google Scholar 

  32. Sheriff, M.J., Krebs, C.J., Boonstra, R.: The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. J. Anim. Ecol. 78(6), 1249–1258 (2009)

    Article  Google Scholar 

  33. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(Suppl 1), 251–263 (2011)

    Article  Google Scholar 

  34. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  Google Scholar 

  35. Wang, X., Zanette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73, 1179–1204 (2016)

    Article  MathSciNet  Google Scholar 

  36. Pal, S., Pal, N., Samanta, S.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019)

    Article  Google Scholar 

  37. Mondal, S., Samanta, G.P.: Impact of fear on a predator–prey system with prey-dependent search rate in deterministic and stochastic environment. Nonlinear Dyn. 104(3), 2931–2959 (2021)

    Article  Google Scholar 

  38. Panday, P., Pal, N., Samanta, S.: Dynamics of a stage-structured predator–prey model: cost and benefit of fear-induced group defense. J. Theor. Biol. 528, 110846 (2021)

    Article  MathSciNet  Google Scholar 

  39. Thirthar, A.A., Majeed, S.J., Alqudah, M.A.: Fear effect in a predator–prey model with additional food, prey refuge and harvesting on super predator. Chaos Solitons Fract. 159, 112091 (2022)

    Article  MathSciNet  Google Scholar 

  40. Sarkar, K., Khajanchi, S.: Spatiotemporal dynamics of a predator–prey system with fear effect. J. Frankl. Inst. 6, 66 (2023)

    MathSciNet  Google Scholar 

  41. Rao, F., Kang, Y.: Dynamics of a stochastic prey–predator system with prey refuge, predation fear and its carry-over effects. Chaos Solitons Fract. 175, 113935 (2023)

    Article  MathSciNet  Google Scholar 

  42. Pal, D., Kesh, D., Mukherjee, D.: Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect. Math. Comput. Simul. 96, 66 (2024)

    MathSciNet  Google Scholar 

  43. Sarkar, K., Khajanchi, S.: Impact of fear effect on the growth of prey in a predator–prey interaction model. Ecol. Complex. 42, 100826 (2020)

    Article  Google Scholar 

  44. Dong, Y., Wu, D., Shen, C.: Influence of fear effect and predator-taxis sensitivity on dynamical behavior of a predator–prey model. Z. Angew. Math. Phys. 73(1), 25 (2022)

    Article  MathSciNet  Google Scholar 

  45. Chen, F.: On a nonlinear nonautonomous predator–prey model with diffusion and distributed delay. J. Comput. Appl. Math. 180(1), 33–49 (2005)

    Article  MathSciNet  Google Scholar 

  46. Gard, T.C., Hallam, T.G.: Persistence in food webs-I Lotka–Volterra food chains. Bull. Math. Biol. 41(6), 877–891 (1979)

    MathSciNet  Google Scholar 

  47. Murray, J.D.: Mathematical Biology I. Springer, Heidelberg (2002)

    Book  Google Scholar 

  48. Verhulst, F.: Differential Equations and Dynamical Systems. Henri Poincaré, Springer (2012)

    Google Scholar 

  49. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2013)

    Google Scholar 

  50. Zhang, Z.: Qualitative Theory of Differential Equations. American Mathematical Society, Philadelphia (1992)

    Google Scholar 

  51. Majumdar, P., Debnath, S., Mondal, B., Sarkar, S., Ghosh, U.: Complex dynamics of a prey–predator interaction model with Holling type-II functional response incorporating the effect of fear on prey and non-linear predator harvesting. Rendiconti del Circolo Matematico di Palermo Series 72(2), 1017–1048 (2023)

    Article  MathSciNet  Google Scholar 

  52. Pal, S., Karmakar, S., Pal, S., Pal, N., Misra, A.K., Chattopadhyay, J.: Impact of fear and group defense on the dynamics of a predator–prey system. Int. J. Bifurc. Chaos 34(02), 2450019 (2024)

    Article  MathSciNet  Google Scholar 

  53. Kuznetsov, Y.A., Kuznetsov, I.A., Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (1998)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (11672074), the Natural Science Foundation of Fujian Province (2022J01192)and the Young Lecturer Education Research Project of Fujian Province (JAT220043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, W. Impact of fear-induced group defense in a Monod–Haldane type prey–predator model. J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02101-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12190-024-02101-8

Keywords

Mathematics Subject Classification

Navigation