Skip to main content
Log in

Mapping the variation in spider body colouration from an insect perspective

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Colour variation is frequently observed in spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six clusters and three clusters in the colour space of D. melanogaster and A. mellifera, respectively. Significant differences were found between morphs for both visual systems in contrasts between the colour pattern and two backgrounds against which it would be viewed. Yellow spiders showed higher chromatic contrast than white spiders, while white spiders showed higher achromatic contrast. Therefore, there are perceptual differences between V. arenata colour morphs in the visual systems of potential relevant observers which could pose an important selective pressure on this trait. A variation in the contribution of colour channels to the colour pattern observed in colour maps constructed from reflectance values of individual pixels could influence the way the pattern is perceived, and its resemblance to attractive flower signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajuria Ibarra H, Reader T (2014) Female-limited colour polymorphism in the crab spider Synema globosum (Araneae: Thomisidae). Biol J Linn Soc 113:368–383

    Article  Google Scholar 

  • Blackledge TA, Coddington JA, Gillespie RG (2003) Are three-dimensional spider webs defensive adaptations? Ecol Lett 6:13–18

    Article  Google Scholar 

  • Blamires SJ, Lai C-H, Cheng R-C et al (2012) Body spot coloration of a nocturnal sit-and-wait predator visually lures prey. Behav Ecol 23:29–74

    Article  Google Scholar 

  • Blamires SJ, Hou C, Chen L-F et al (2014) A predator’s body coloration enhances its foraging profitability by day and night. Behav Ecol Sociobiol 68:1253–1260

    Article  Google Scholar 

  • Bond AB (2007) The evolution of color polymorphism: crypticity searching images, and apostatic selection. Annu Rev Ecol Evol Syst 38:489–514

    Article  Google Scholar 

  • Brembs B, de Ibarra NH (2006) Different parameters support generalization and discrimination learning in Drosophila at the flight simulator. Learn Mem 13:629–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  CAS  PubMed  Google Scholar 

  • Bush AA, Yu DW, Herberstein ME (2008) Function of bright coloration in the wasp spider Argiope bruennichi (Araneae: Araneidae). Proc R Soc B Biol Sci 275:1337–1342

    Article  Google Scholar 

  • Chuang C-Y, Yang E-C, Tso I-M (2007) Diurnal and nocturnal prey luring of a colorful predator. J Exp Biol 210:3830–3837

    Article  PubMed  Google Scholar 

  • Craig CL (1994) Limits to learning: effects of predator pattern and colour on perception and avoidance-learning by prey. Anim Behav 47:1087–1099

    Article  Google Scholar 

  • Defrize J, Théry M, Casas J (2010) Background colour matching by a crab spider in the field: a community sensory ecology perspective. J Exp Biol 213:1425–1435

    Article  PubMed  Google Scholar 

  • Dinkel T, Lunau K (2001) How drone flies (Eristalis tenax L., Syrphidae, Diptera) use floral guides to locate food sources. J Insect Physiol 47:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Endler JA, Mielke PW (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405–431

    Article  Google Scholar 

  • Eye Lightning International (2007) EYE color arc brochure. http://www.eyelighting.com/_CE/pagecontent/Documents/SellSheets/Metal%20Halide/Color%20Arc%20Brochure.pdf

  • Fan C-M, Yang E-C, Tso I-M (2009) Hunting efficiency and predation risk shapes the color-associated foraging traits of a predator. Behav Ecol 20:808–816

    Article  Google Scholar 

  • Fleishman LJ, Perez CW, Yeo AI et al (2016) Perceptual distance between colored stimuli in the lizard Anolis sagrei: comparing visual system models to empirical results. Behav Ecol Sociobiol 70:541–555

    Article  Google Scholar 

  • Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588

    Article  Google Scholar 

  • Garbers C, Wachtler T (2016) Wavelength discrimination in Drosophila suggests a role of Rhodopsin 1 in color vision. PLoS ONE 11:e0155728

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawryszewski FM, Motta PC (2012) Colouration of the orb-web spider Gasteracantha cancriformis does not increase its foraging success. Ethol Ecol Evol 24:23–38

    Article  Google Scholar 

  • Geay C, Leborgne R, François O, Pasquet A (2012) Maintenance of polymorphism in the orb weaving spider species Agalenatea redii (Araneae, Araneidae). Arachnol Mitt 43:51–57

    Article  Google Scholar 

  • Gillespie RG, Oxford GS (1998) Selection on the color polymorphism in Hawaiian happy-face spiders: evidence from genetic structure and temporal fluctuations. Evolution 52:775–783

    Article  PubMed  Google Scholar 

  • Giraud C (2015) Introduction to high-dimensional statistics. Taylor & Francis Group, Milton Park

    Google Scholar 

  • Giurfa M, Nunez J, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A 177:247–259

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Gray SM, McKinnon JS (2007) Linking color polymorphism maintenance and speciation. Trends Ecol Evol 22:71–79

    Article  PubMed  Google Scholar 

  • Hancox D, Wilson RS, White CR (2013) Visual habitat geometry predicts relative morph abundance in the colour-polymorphic ornate rainbowfish. Proc R Soc B Biol Sci 280:20122377

    Article  Google Scholar 

  • Hauber ME (2002) Conspicuous colouration attracts prey to a stationary predator. Ecol Entomol 27:686–691

    Article  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M (2009) Flower patterns are adapted for detection by bees. J Comp Physiol A 195:319–323

    Article  Google Scholar 

  • Hempel de Ibarra N, Giurfa M, Vorobyev M (2001) Detection of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 187:215–224

    Article  CAS  PubMed  Google Scholar 

  • Hempel de Ibarra N, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 200:411–433

    Article  CAS  Google Scholar 

  • Hempel de Ibarra N, Langridge KV, Vorobyev M (2015) More than colour attraction: behavioural functions of flower patterns. Curr Opin Insect Sci 12:64–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoese FJ, Law EAJ, Rao D, Herberstein ME (2006) Distinctive yellow bands on a sit-and-wait predator: prey attractant or camouflage? Behaviour 143:763–781

    Article  Google Scholar 

  • Huang S, Chiou T, Marshall J, Reinhard J (2014) Spectral sensitivities and color signals in a polymorphic damselfly. PLoS ONE 9:e87972

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly MM, Gaskett AC (2014) UV reflectance but no evidence of colour mimicry in a putative brood-deceptive orchid Corybas cheesemanii. Curr Zool 60(1):104–113

    Article  Google Scholar 

  • Kemp DJ, Holmes C, Congdon BC, Edwards W (2013) Color polymorphism in spiny spiders (Gasteracantha fornicata): testing the adaptive significance of a geographically clinal lure. Ethology 119:1126–1137

    Article  Google Scholar 

  • Koski MH, Ashman T-L (2014) Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct Ecol 28:868–877

    Article  Google Scholar 

  • Land MF, Nilsson DE (2002) Animal eyes. Oxford University Press, New York

    Google Scholar 

  • Lim MLM, Li D (2013) UV-green iridescence predicts male quality during jumping spider contests. PLoS ONE 8:e59774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim MLM, Li J, Li D (2008) Effect of UV-reflecting markings on female mate-choice decisions in Cosmophasis umbratica, a jumping spider from Singapore. Behav Ecol 19:61–66

    Article  Google Scholar 

  • Limeri LB, Morehouse NI (2014) Sensory limitations and the maintenance of colour polymorphisms: viewing the “alba” female polymorphism through the visual system of male Colias butterflies. Funct Ecol 28:1197–1207

    Article  Google Scholar 

  • Lind O (2016) Colour vision and background adaptation in a passerine bird, the zebra finch (Taeniopygia guttata). R Soc Open Sci 3:160383

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobdell CE, Yong T-H, Hoffmann MP (2005) Host color preferences and short-range searching behavior of the egg parasitoid Trichogramma ostriniae. Entomol Exp Appl 116:127–134

    Article  Google Scholar 

  • Lucchetta P, Bernstein C, Théry M et al (2008) Foraging and associative learning of visual signals in a parasitic wasp. Anim Cognit 11:525–533

    Article  Google Scholar 

  • Lunau K (2014) Visual ecology of flies with particular reference to colour vision and colour preferences. J Comp Physiol A 200:497–512

    Article  Google Scholar 

  • Maan ME, Cummings ME (2008) Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62:2334–2345

    Article  PubMed  Google Scholar 

  • Mckinnon JS, Pierotti MER (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19:5101–5125

    Article  PubMed  Google Scholar 

  • McLean CA, Stuart-Fox D (2014) Geographic variation in animal colour polymorphisms and its role in speciation. Biol Rev 89:860–873

    Article  PubMed  Google Scholar 

  • Michie LJ, Mallard F, Majerus MEN, Jiggins FM (2010) Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J Evol Biol 23:1699–1707

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8:845–856

    Article  CAS  PubMed  Google Scholar 

  • Nakata K, Shigemiya Y (2015) Body-colour variation in an orb-web spider and its effect on predation success. Biol J Linn Soc 116:954–963

    Article  Google Scholar 

  • O’Hanlon JC, Holwell GI, Herberstein ME (2014) Predatory pollinator deception: does the orchid mantis resemble a model species? Curr Zool 60:90–103

    Article  Google Scholar 

  • Oxford GS, Gillespie RG (1998) Evolution and ecology of spider coloration. Annu Rev Entomol 43:619–643

    Article  CAS  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H et al (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 170:23–40

    Article  CAS  Google Scholar 

  • Peng P, Blamires SJ, Agnarsson I et al (2013) A color-mediated mutualism between two arthropod predators. Curr Biol 23:172–176

    Article  CAS  PubMed  Google Scholar 

  • Pinkus Rendón MA, Ibarra-Nú; atnez G, Parra-Tabla V et al (2006) Spider diversity in coffee plantations with different management in Southeast Mexico. J Arachnol 34:104–112

    Article  Google Scholar 

  • Prokopy RJ, Economopoulos AP, McFadden MW (1975) Attraction of wild and laboratory-cultured Dacus oleae flies to small rectangles of different hues, shades, and tints. Entomol Exp Appl 18:141–152

    Article  Google Scholar 

  • Rao D, Mendoza-Cuenca L (2016) The effect of colour polymorphism on thermoregulation in an orb web spider. Sci Nat 103:1–5

    Article  Google Scholar 

  • Rao D, Castañeda-Barbosa E, Nuñez-Beverido N, Díaz-Fleischer F (2015) Foraging benefits in a colour polymorphic neotropical orb web spider. Ethology 121:187–195

    Article  Google Scholar 

  • Renoult JP, Valido A, Jordano P, Schaefer HM (2014) Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytol 201:678–686

    Article  PubMed  Google Scholar 

  • Renoult JP, Kelber A, Schaefer HM (2015) Colour spaces in ecology and evolutionary biology. Biol Rev. doi:10.1111/brv.12230

    PubMed  Google Scholar 

  • Robertson JM, Zamudio KR (2009) Genetic diversification, vicariance, and selection in a polytypic frog. J Hered 100:715–731

    Article  CAS  PubMed  Google Scholar 

  • Salcedo E, Huber A, Henrich S et al (1999) Blue-and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci 19:10716–10726

    CAS  PubMed  Google Scholar 

  • Schnaitmann C, Garbers C, Wachtler T, Tanimoto H (2013) Color discrimination with broadband photoreceptors. Curr Biol 23:2375–2382

    Article  CAS  PubMed  Google Scholar 

  • Schultz TD, Fincke OM (2013) Lost in the crowd or hidden in the grass: signal apparency of female polymorphic damselflies in alternative habitats. Anim Behav 86:923–931

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Scrucca L, Fop M, Murphy TB et al (2016) mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R J 8(1):289–317

    PubMed  PubMed Central  Google Scholar 

  • Sharp JL, James J (1979) Color preference of Vespula squamosa. Environ Entomol 8:708–710

    Article  Google Scholar 

  • Siddiqi A, Cronin TW, Loew ER et al (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207:2471–2485

    Article  PubMed  Google Scholar 

  • Stark WS, Thomas CF (2004) Microscopy of multiple visual receptor types in Drosophila. Mol Vis 10:943–955

    CAS  PubMed  Google Scholar 

  • Stevens M, Párraga CA, Cuthill IC et al (2007) Using digital photography to study animal coloration. Biol J Linn Soc 90:211–237

    Article  Google Scholar 

  • Stevens M, Stoddard MC, Higham JP (2009) Studying primate color: towards visual system-dependent methods. Int J Primatol 30:893–917

    Article  Google Scholar 

  • Stoddard MC, Kilner RM, Town C (2014) Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat Commun 5:4117

    Article  CAS  PubMed  Google Scholar 

  • Sutherlands JP, Sullivan MS, Poppy GM (1999) The influence of floral character on the foraging behaviour of the hoverfly Episyrphus balteatus. Entomol Exp Appl 93:157–164

    Article  Google Scholar 

  • Tapia-McClung H, Ajuria Ibarra H, Rao D (2016) Quantifying human visible color variation from high definition digital images of orb web spiders. PLoS ONE 11:e0166371

    Article  PubMed  PubMed Central  Google Scholar 

  • Tastard E, Andalo C, Girufa M et al (2008) Flower color variation across a hybrid zone in Antirrhinum as perceived by bumblebee pollinators. Arthropod Plant Interact 2:237–246

    Article  Google Scholar 

  • Taylor CH, Gilbert F, Reader T (2013) Distance transform: a tool for the study of animal colour patterns. Methods Ecol Evol 4:771–781

    Article  Google Scholar 

  • Tedore C, Johnsen S (2012) Weaponry, color, and contest success in the jumping spider Lyssomanes viridis. Behav Process 89:203–211

    Article  Google Scholar 

  • Telles FJ, Rodríguez-Gironés MA (2015) Insect vision models under scrutiny: what bumblebees (Bombus terrestris terrestris L.) can still tell us. Sci Nat 102:1–13

    Article  CAS  Google Scholar 

  • Troje N (1993) Spectral categories in the learning behaviour of blowflies. Z Naturforsch C 48:96–104

    Google Scholar 

  • Troscianko J, Stevens M (2015) Image calibration and analysis toolbox: a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol Evol 6:1320–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai BK, Allen DW, Hanssen LM et al (2008) A comparison of optical properties between high density and low density sintered PTFE. Proc SPIE 7065(0Y):1–9

    Google Scholar 

  • Tso IM, Lin CW, Yang EC (2004) Colourful orb-weaving spiders, Nephila pilipes, through a bee’s eyes. J Exp Biol 207:2631–2637

    Article  PubMed  Google Scholar 

  • Vorobyev M, Brandt R (1997) How do insect pollinators discriminate colours. Israel J Plant Sci 45:103–114

    Article  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Lond B Biol Sci 265:351–358

    Article  CAS  Google Scholar 

  • Vorobyev M, Brandt R, Peitsch D et al (2001) Colour thresholds and receptor noise: behaviour and physiology compared. Vis Res 41:639–653

    Article  CAS  PubMed  Google Scholar 

  • White TE, Kemp DJ (2015) Technicolour deceit: a sensory basis for the study of colour-based lures. Anim Behav 105:231–243

    Article  Google Scholar 

  • White TE, Kemp DJ (2016) Color polymorphic lures target different visual channels in prey. Evolution 70:1398–1408

    Article  PubMed  Google Scholar 

  • White TE, Dalrymple RL, Herberstein ME, Kemp DJ (2016) The perceptual similarity of orb-spider prey lures and flower colours. Evol Ecol. doi:10.1007/s10682-016-9876-x

    Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data formulae. Wiley, New York

    Google Scholar 

  • Yamaguchi S, Desplan C, Heisenberg M (2010) Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc Natl Acad of Sci USA 107:5634–5639

    Article  CAS  Google Scholar 

  • Zschokke S, Hénaut Y, Benjamin SP, García-Ballinas JA (2006) Prey-capture strategies in sympatric web-building spiders. Can J Zool 84:964–973

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Secretaría de Medio Ambiente for permission to collect spiders at Parque Natura. We would also like to thank Cruz Raúl Perea Castellanos, Samuel Aguilar Argüello and Kevin Salgado Espinosa for their help in collecting the spiders. We are grateful to Jolyon Troscianko for determining the spectral sensitivities of the camera set up used in this study, and for his help in solving problems encountered when using the image calibration and analysis toolbox.

Funding

HA.I. was supported by the Consejo Nacional de Ciencia y Tecnología [Estancias postdoctorales nacionales, 211023] during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Ajuria-Ibarra.

Ethics declarations

Data availability

The datasets obtained during and/or analysed during the current study are available from the corresponding author on reasonable request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajuria-Ibarra, H., Tapia-McClung, H. & Rao, D. Mapping the variation in spider body colouration from an insect perspective. Evol Ecol 31, 663–681 (2017). https://doi.org/10.1007/s10682-017-9904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-017-9904-5

Keywords

Navigation