Skip to main content
Log in

Studying Primate Color: Towards Visual System-dependent Methods

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Primates exhibit a striking diversity of colors and patterns in their pelage and skin markings, used in functions as diverse as camouflage to sexual signaling. In studying primate colors, it is important to adopt approaches not based on human assessment wherever possible, and that preferably take account of the visual system of the appropriate receiver(s). Here, we outline some of the main techniques for recording the colors exhibited and encountered by primates, including the use of digital photography and reflectance spectrometry. We go on to discuss the main approaches for analyzing the data obtained, including those not linked to a particular visual system, such as direct analyses of reflectance spectra. We argue that researchers should strive for analyses based on the visual system of the relevant receiver, and outline some of the main modeling approaches that can be used, such as color space and discrimination threshold modeling. By analyzing color measures with respect to specific visual systems, field studies can link behavioral ecology to the visual and cognitive sciences, and move toward descriptions of signal information content that incorporate elements of receiver psychology. This in turn should lead to a greater understanding of the detection and interpretation of signals by receivers, and hence their likely use in decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abràmoff, M. D., Magalhäes, P. J., & Ram, S. J. (2004). Image processing with Image J. Biophotonics International, 7, 36–43.

    Google Scholar 

  • Ammermüller, J., Itzhaki, A., Weiler, R., & Perlman, I. (1998). UV-sensitive input to horizontal cells in the turtle retina. European Journal of Neuroscience, 10, 1544–1552. doi:10.1046/j.1460-9568.1998.00160.x.

    Article  PubMed  Google Scholar 

  • Andersson, S., & Amundsen, T. (1997). Ultraviolet colour vision and ornamentation in bluethroats. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264, 1587–1591. doi:10.1098/rspb.1997.0221.

    Article  Google Scholar 

  • Andersson, S., & Prager, M. (2006). Quantifying colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration, vol. I: Mechanisms & measurements (pp. 41–89). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Baldauf, S. A., Kullmann, H., & Bakker, T. C. M. (2008). Technical restrictions of computer-manipulated visual stimuli and display units for studying animal behaviour. Ethology, 114, 737–751. doi:10.1111/j.1439-0310.2008.01520.x.

    Article  Google Scholar 

  • Bercovitch, F. B. (1996). Testicular function and scrotal colouration in patas monkeys. Journal of Zoology, 239, 93–100.

    Article  Google Scholar 

  • Bergman, T. J., & Beehner, J. C. (2008). A simple method for measuring colour in wild animals: Validation and use of chest patch colour in geladas (Theropithecus gelada). Biological Journal of the Linnean Society. Linnean Society of London, 94, 231–240. doi:10.1111/j.1095-8312.2008.00981.x.

    Article  Google Scholar 

  • Bowmaker, J. K., Astell, S., Hunt, D. M., & Mollon, J. D. (1991). Photosensitive and photostabile pigments in the retinae of Old World monkeys. Journal of Experimental Biology, 156, 1–19.

    CAS  PubMed  Google Scholar 

  • Bradley, B. J., & Mundy, N. I. (2008). The primate palette: The evolution of primate coloration. Evolutionary Anthropology, 17, 97–111. doi:10.1002/evan.20164.

    Article  Google Scholar 

  • Brainard, D. H., Williams, D. R., & Hofer, H. (2008). Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. Journal of Vision (Charlottesville, Va.), 8, 1–23. doi:10.1167/8.5.15.

    Google Scholar 

  • Chatterjee, S., & Callaway, E. M. (2003). Parallel colour-opponent pathways to the primary visual cortex. Nature, 426, 668–671. doi:10.1038/nature02167.

    Article  CAS  PubMed  Google Scholar 

  • Chiao, C. C., Osorio, D., Vorobyev, M., & Cronin, T. W. (2000). Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra. Journal of the Optical Society of America, A, 17, 1713–1721.

    Article  CAS  Google Scholar 

  • Chichilnisky, E. J., & Wandell, B. A. (1999). Trichromatic opponent colour classification. Vision Research, 39, 3444–3458. doi:10.1016/S0042-6989(99)00033-4.

    Article  CAS  PubMed  Google Scholar 

  • Cuthill, I. C. (2006). Color perception. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration, vol. I: Mechanisms & measurements (pp. 3–40). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cuthill, I. C., Bennett, A. T. D., Partridge, J. C., & Maier, E. H. (1999). Plumage reflectance and the objective assessment of avian sexual dichromatism. American Naturalist, 153, 183–200. doi:10.1086/303160.

    Article  Google Scholar 

  • Cuthill, I. C., Stevens, M., Sheppard, J., Maddocks, T., Párraga, C. A., & Troscianko, T. (2005). Disruptive coloration and background pattern matching. Nature, 434, 72–74. doi:10.1038/nature03312.

    Article  CAS  PubMed  Google Scholar 

  • Dacey, D. M. (2000). Parallel pathways for spectral coding in the primate retina. Annual Review of Neuroscience, 23, 743–775. doi:10.1146/annurev.neuro.23.1.743.

    Article  CAS  PubMed  Google Scholar 

  • Darst, C. R., Cummings, M. E., & Cannatella, D. C. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 5852–5857. doi:10.1073/pnas.0600625103.

    Article  CAS  PubMed  Google Scholar 

  • Dartnall, H. J. A., Bowmaker, J. K., & Mollon, J. D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society of London. Series B: Biological Sciences, 220, 115–130. doi:10.1098/rspb.1983.0091.

    Article  CAS  Google Scholar 

  • D’Eath, R. B. (1998). Can video images imitate real stimuli in animal behaviour experiments? Biological Reviews of the Cambridge Philosophical Society, 73, 267–292. doi:10.1017/S0006323198005179.

    Article  Google Scholar 

  • Deegan, J. F., II, & Jacobs, G. H. (2001). Spectral sensitivity of gibbons: Implications for photopigments and color vision. Folia Primatologica, 72, 26–29. doi:10.1159/000049915.

    Article  Google Scholar 

  • Dkhissi-Benyahya, O., Szel, A., Degrip, W. J., & Cooper, H. M. (2001). Short and mid-wave cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus). Journal of Comparative Neurology, 438, 490–504. doi:10.1002/cne.1330.

    Article  CAS  PubMed  Google Scholar 

  • Efford, N. (2000). Digital image processing: A practical introduction using Java. Harlow, Essex: Pearson Education.

    Google Scholar 

  • Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society. Linnean Society of London, 41, 315–352. doi:10.1111/j.1095-8312.1990.tb00839.x.

    Article  Google Scholar 

  • Endler, J. A., & Mielke, P. W. J. (2005). Comparing color patterns as birds see them. Biological Journal of the Linnean Society. Linnean Society of London, 86, 405–431. doi:10.1111/j.1095-8312.2005.00540.x.

    Article  Google Scholar 

  • Endler, J. A., Westcott, D. A., Madden, J. R., & Robson, T. (2005). Animal visual systems and the evolution of color patterns; sensory processing illuminates signal evolution. Evolution; International Journal of Organic Evolution, 50, 1795–1818.

    Google Scholar 

  • Fleishman, L. J., & Endler, J. A. (2000). Some comments on visual perception and the use of video playback in animal behavior studies. Acta Ethologica, 3, 15–27. doi:10.1007/s102110000025.

    Article  Google Scholar 

  • Fleishman, L. J., Mcclintock, W. J., D’Eath, R. B., Brainard, D. H., & Endler, J. A. (1998). Colour perception and the use of video playback experiments in animal behaviour. Animal Behaviour, 56, 1035–1040. doi:10.1006/anbe.1998.0894.

    Article  PubMed  Google Scholar 

  • Gerald, M. S. (2001). Primate colour predicts social status and aggressive outcome. Animal Behaviour, 61, 559–566. doi:10.1006/anbe.2000.1648.

    Article  Google Scholar 

  • Gerald, M. S., Bernstein, J., Hinkson, R., & Fosbury, R. A. E. (2001). Formal method for objective assessment of primate color. American Journal of Primatology, 53, 79–85. doi:10.1002/1098-2345(200102) 53:2<79::AID-AJP3>3.0.CO;2-N.

    Article  CAS  PubMed  Google Scholar 

  • Gerald, M. S., Weiss, A., & Ayala, J. E. (2006a). Artificial colour treatment mediates aggression among unfamiliar vervet monkeys (Cercopithecus aethiops): A model for introducing primates with colourful sexual skin. Animal Welfare (South Mimms, England), 15, 363–369.

    CAS  Google Scholar 

  • Gerald, M. S., Waitt, C., & Maestripieri, D. (2006b). An experimental examination of female responses to infant face coloration in rhesus macaques. Behavioural Processes, 73, 253–256. doi:10.1016/j.beproc.2006.06.003.

    Article  PubMed  Google Scholar 

  • Gerald, M. S., Waitt, C., Little, A. C., & Kraiselburd, E. (2007). Females pay attention to female secondary sexual color: An experimental study in Macaca mulatta. International Journal of Primatology, 28, 1–7. doi:10.1007/s10764-006-9110-8.

    Article  Google Scholar 

  • Goldsmith, T. H. (1990). Optimization, constraint, and history in the evolution of eyes. Quarterly Review of Biology, 65, 281–322. doi:10.1086/416840.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2004). Digital image processing using MATLAB. London: Pearson Education.

    Google Scholar 

  • Graham, N. V. S. (1989). Visual pattern analysers. Oxford Psychology Series. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Gregory, R. L. (1998). Eye and brain: The psychology of seeing. Oxford: Oxford University Press.

    Google Scholar 

  • Ham, A. D., & Osorio, D. (2007). Colour preference and colour vision in poultry chicks. Proceedings of the Royal Society, Series B, 274, 1941–1948. doi:10.1098/rspb.2007.0538.

    Article  CAS  Google Scholar 

  • Håstad, O., Victorsson, J., & Ödeen, A. (2005). Differences in color vision make passerines less conspicuous in the eyes of their predators. Proceedings of the National Academy of Sciences of the United States of America, 102, 6391–6394. doi:10.1073/pnas.0409228102.

    Article  PubMed  CAS  Google Scholar 

  • Higham, J. P. (2006). The reproductive ecology of female olive baboons (Papio hamadryas anubis) at Gashaka-Gumti National Park, Nigeria. PhD thesis. Roehampton University: London.

  • Higham, J. P., MacLarnon, A., Ross, C., Heistermann, M., & Semple, S. (2008). Baboon sexual swellings: Information content of size and color. Hormones and Behavior, 53, 452–462. doi:10.1016/j.yhbeh.2007.11.019.

    Article  PubMed  Google Scholar 

  • Isbell, L. A. (1995). Seasonal and social correlates of changes in hair, skin, and scrotal condition in vervet monkeys (Cercopithecus aethiops) of Amboseli National Park, Kenya. American Journal of Primatology, 36, 61–70. doi:10.1002/ajp. 1350360105.

    Article  Google Scholar 

  • Jacobs, G. H. (1996). Primate photopigments and primate color vision. Proceedings of the National Academy of Sciences of the United States of America, 93, 577–581. doi:10.1073/pnas.93.2.577.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, G. H. (2007). New World monkeys and color. International Journal of Primatology, 28, 729–759. doi:10.1007/s10764-007-9168-y.

    Article  Google Scholar 

  • Jacobs, G. H., & Deegan, J. F., II. (1993). Photopigments underlying color vision in ringtail lemurs (Lemur caffa) and brown lemurs (Eulemur fulvus). American Journal of Primatology, 30, 243–256. doi:10.1002/ajp. 1350300307.

    Article  Google Scholar 

  • Jacobs, G. H., & Deegan, J. F., II. (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society, Series B, 26, 2023–2028.

    Article  Google Scholar 

  • Jacobs, G. H., & Deegan, J. F., II. (2003). Cone pigment variations in four genera of New World monkeys. Vision Research, 43, 227–236. doi:10.1016/S0042-6989(02)00565-5.

    Article  PubMed  Google Scholar 

  • Jacobs, G. H., & Williams, G. A. (2006). L and M cone proportions in polymorphic New World monkeys. Visual Neuroscience, 23, 365–370. doi:10.1017/S0952523806233066.

    Article  PubMed  Google Scholar 

  • Jordan, G., & Mollon, J. D. (1992). Do tetrachromatic women exist? Investigative Ophthalmology & Visual Science, 33, 754.

    Google Scholar 

  • Kelber, A., Vorobyev, M., & Osorio, D. (2003). Animal colour vision—behavioural tests and physiological concepts. Biological Reviews of the Cambridge Philosophical Society, 78, 81–118. doi:10.1017/S1464793102005985.

    Article  PubMed  Google Scholar 

  • Knoblauch, K., Neitz, M., & Neitz, J. (2006). An urn model of the development of L/M cone ratios in human and macaque retinas. Visual Neuroscience, 23, 387–394. doi:10.1017/S0952523806233157.

    Article  PubMed  Google Scholar 

  • Kremers, J., Scholl, H. P. N., Knau, H., Berendschot, T. T. J. M., Usui, T., & Sharpe, L. T. (2000). L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry. Journal of the Optical Society of America, A, 17, 517–526.

    Article  CAS  Google Scholar 

  • Lennie, P., Pokorny, J., & Smith, V. C. (1993). Luminance. Journal of the Optical Society of America, A, 10, 1283–1293.

    Article  CAS  Google Scholar 

  • Lovell, P. G., Tolhurst, D. J., Párraga, C. A., Baddeley, R., Leonards, U., Troscianko, J., et al. (2005). Stability of the color-opponent signals under changes of illuminant in natural scenes. Journal of the Optical Society of America, 22, 2060–2071. doi:10.1364/JOSAA.22.002060.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod, D. I., & Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69, 1183–1186. doi:10.1364/JOSA.69.001183.

    Article  CAS  PubMed  Google Scholar 

  • Maddocks, S. A., Church, S. C., & Cuthill, I. C. (2001). The effects of the light environment on prey choice by zebra finches. Journal of Experimental Biology, 204, 2509–2515.

    CAS  PubMed  Google Scholar 

  • Marc, R. E., & Sperling, H. G. (1977). Chromatic organization of primate cones. Science, 296, 454–456. doi:10.1126/science.403607.

    Article  Google Scholar 

  • Montgomerie, R. (2006). Analyzing colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration, Vol. I: mechanisms & measurements (pp. 90–147). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Osorio, D., & Ham, A. D. (2002). Spectral reflectance and directional properties of structural coloration bird plumage. Journal of Experimental Biology, 205, 2017–2027.

    CAS  PubMed  Google Scholar 

  • Osorio, D., & Vorobyev, M. (1996). Colour vision as an adaptation to frugivory in primates. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263, 593–599. doi:10.1098/rspb.1996.0089.

    Article  CAS  PubMed  Google Scholar 

  • Osorio, D., & Vorobyev, M. (2005). Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proceedings of the Royal Society of London. Series B: Biological Sciences, 272, 1745–1752. doi:10.1098/rspb.2005.3156.

    Article  CAS  PubMed  Google Scholar 

  • Osorio, D., & Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48, 2042–2051. doi:10.1016/j.visres.2008.06.018.

    Article  CAS  PubMed  Google Scholar 

  • Osorio, D., Vorobyev, M., & Jones, C. D. (1999). Colour vision in domestic chicks. Journal of Experimental Biology, 202, 2951–2959.

    CAS  PubMed  Google Scholar 

  • Osorio, D., Smith, A. C., Vorobyev, M., & Buchanan-Smith, H. M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist, 164, 696–708. doi:10.1086/425332.

    Article  Google Scholar 

  • Párraga, C. A., Troscianko, T., & Tolhurst, D. J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology, 12, 483–487. doi:10.1016/S0960-9822(02)00718-2.

    Article  PubMed  Google Scholar 

  • Rasband, W. S. (1997–2009). Image J. Bethesda, MD: National Institutes of Health. Retrieved from http:/rsb.info.nih.gov/ij/.

  • Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P., & Mollon, J. D. (1998). Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Research, 38, 3321–3327. doi:10.1016/S0042-6989(97)00462-8.

    Article  CAS  PubMed  Google Scholar 

  • Regan, B. C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London, Series B, 356, 229–283. doi:10.1098/rstb.2000.0773.

    Article  CAS  Google Scholar 

  • Rolls, E. T., & Deco, G. (2002). Computational neuroscience of vision. Oxford: Oxford University Press.

    Google Scholar 

  • Rovamo, J. M., Kankaanpaa, M. I., & Hallikainen, J. (2001). Spatial neural modulation transfer function of human foveal visual system for equiluminous chromatic gratings. Vision Research, 41, 1659–1667. doi:10.1016/S0042-6989(01)00036-0.

    Article  CAS  PubMed  Google Scholar 

  • Rowland, H. M., Speed, M. P., Ruxton, G. D., Edmunds, M., Stevens, M., & Harvey, I. F. (2007). Countershading enhances cryptic protection: An experiment with wild birds and artificial prey. Animal Behaviour, 74, 1249–1258. doi:10.1016/j.anbehav.2007.01.030.

    Article  Google Scholar 

  • Santos, S. I. C. O., De Neve, L., Lumeij, J. T., & Förschler, M. I. (2007). Strong effects of various incidence and observation angles on spectrometric assessment of plumage colouration in birds. Behavioral Ecology and Sociobiology, 61, 1499–1506. doi:10.1007/s00265-007-0373-7.

    Article  Google Scholar 

  • Setchell, J. M., & Dixson, A. F. (2001). Changes in the secondary sexual adornments of male Mandrills (Mandrillus sphinx) are associated with gain and loss of alpha status. Hormones and Behavior, 39, 177–184. doi:10.1006/hbeh.2000.1628.

    Article  CAS  PubMed  Google Scholar 

  • Setchell, J. M., Wickings, E. J., & Knapp, L. A. (2006). Signal content of red facial coloration in female mandrills (Mandrillus sphinx). Proceedings of the Royal Society of London. Series B: Biological Sciences, 273, 2395–2400. doi:10.1098/rspb.2006.3573.

    Article  PubMed  Google Scholar 

  • Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M., & Summers, K. (2004). Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. Journal of Experimental Biology, 207, 2471–2485. doi:10.1242/jeb.01047.

    Article  PubMed  Google Scholar 

  • Siitari, H., Honkavaara, J., Huhta, E., & Viitala, J. (2002). Ultraviolet reflection and female mate choice in the pied flycatcher, Ficedula hypoleuca. Animal Behaviour, 63, 97–102. doi:10.1006/anbe.2001.1870.

    Article  Google Scholar 

  • Stevens, M., & Cuthill, I. C. (2005). The unsuitability of html-based colour charts for estimating animal colours—a comment on Berggren & Merilä. Frontiers in Zoology, 2, 1–14. doi:10.1186/1742-9994-2-14.

    Article  Google Scholar 

  • Stevens, M., & Cuthill, I. C. (2006). Disruptive coloration, crypsis and edge detection in early visual processing. Proceedings of the Royal Society, Series B, 273, 2141–2147. doi:10.1098/rspb.2006.3556.

    Article  Google Scholar 

  • Stevens, M., & Cuthill, I. C. (2007). Hidden messages: Are ultraviolet signals a special channel in avian communication? BioScience, 57, 501–507. doi:10.1641/B570607.

    Article  Google Scholar 

  • Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C., & Troscianko, T. S. (2007a). Using digital photography to study animal coloration. Biological Journal of the Linnean Society. Linnean Society of London, 90, 211–237. doi:10.1111/j.1095-8312.2007.00725.x.

    Article  Google Scholar 

  • Stevens, M., Hopkins, E., Hinde, W., Adcock, A., Connelly, Y., Troscianko, T., et al. (2007b). Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Animal Behaviour, 74, 1215–1227. doi:10.1016/j.anbehav.2007.01.031.

    Article  Google Scholar 

  • Stevens, M., Winney, I. S., Cantor, A., & Graham, J. (2009). Object outline and surface disruption in animal camouflage. Proceedings of the Royal Society, Series B, 276, 781–786. doi:10.1098/rspb.2008.1450.

    Article  Google Scholar 

  • Stobbe, N., & Schaefer, H. M. (2008). Enhancement of chromatic contrast increases predation risk for striped butterflies. Proceedings of the Royal Society, Series B, 275, 1535–1541. doi:10.1098/rspb.2008.0209.

    Article  Google Scholar 

  • Stockman, A., & Plummer, D. J. (2005). Spectrally opponent inputs to the human luminance pathway: Slow +L and −M cone inputs revealed by low to moderate long-wavelength adaptation. Journal of Physiology, 566, 77–91. doi:10.1113/jphysiol.2005.084095.

    Article  CAS  PubMed  Google Scholar 

  • Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tricolor space: A phylogenetic analysis of New World buntings. American Naturalist, 171, 755–776. doi:10.1086/587526.

    Article  PubMed  Google Scholar 

  • Sumner, P., & Mollon, J. D. (2000a). Catarrhine photopigments are optimised for detecting targets against a foliage background. Journal of Experimental Biology, 203, 1963–1986.

    CAS  PubMed  Google Scholar 

  • Sumner, P., & Mollon, J. D. (2000b). Chromaticity as a signal of ripeness in fruits taken by primates. Journal of Experimental Biology, 203, 1987–2000.

    CAS  PubMed  Google Scholar 

  • Sumner, P., & Mollon, J. D. (2003). Colors of primate pelage and skin: Objective assessment of conspicuousness. American Journal of Primatology, 59, 67–91. doi:10.1002/ajp. 10066.

    Article  PubMed  Google Scholar 

  • Sumner, P., Arrese, C. A., & Partridge, J. C. (2005). Journal of Experimental Biology, 208, 1803–1815. doi:10.1242/jeb.01610.

    Article  PubMed  Google Scholar 

  • Surridge, A. K., Osorio, D., & Mundy, N. I. (2003). Evolution and selection of trichromatic vision in primates. Trends in Ecology & Evolution, 18, 198–205. doi:10.1016/S0169-5347(03)00012-0.

    Article  Google Scholar 

  • Tan, Y., & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature, 402, 36. doi:10.1038/46947.

    Article  CAS  PubMed  Google Scholar 

  • Tovée, M. J. (1995). Ultraviolet photoreceptors in the animal kingdom: Their distribution and function. Trends in Ecology & Evolution, 10, 455–460. doi:10.1016/S0169-5347(00)89179-X.

    Article  Google Scholar 

  • Ventura, D. F., deSouza, J. M., Devoe, R. D., & Zana, Y. (1999). UV responses in the retina of the turtle. Visual Neuroscience, 16, 191–204. doi:10.1017/S0952523899162011.

    Article  CAS  PubMed  Google Scholar 

  • Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265, 351–358. doi:10.1098/rspb.1998.0302.

    Article  CAS  PubMed  Google Scholar 

  • Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J., & Cuthill, I. C. (1998). Tetrachromacy, oil droplets and bird plumage colours. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 183, 621–633. doi:10.1007/s003590050286.

    Article  CAS  PubMed  Google Scholar 

  • Vorobyev, M., Brandt, R., Peitsch, D., Laughlin, S. B., & Menzel, R. (2001). Colour thresholds and receptor noise: Behaviour and physiology compared. Vision Research, 41, 639–653. doi:10.1016/S0042-6989(00)00288-1.

    Article  CAS  PubMed  Google Scholar 

  • Waitt, C., & Buchanan-Smith, H. M. (2006). Perceptual considerations in the use of colored photographic and video stimuli to study nonhuman primate behaviour. American Journal of Primatology, 68, 1054–1067. doi:10.1002/ajp.20303.

    Article  PubMed  Google Scholar 

  • Waitt, C., Gerald, M. S., Little, A. C., & Kraiselburd, E. (2006). Selective attention toward female secondary sexual color in male rhesus macaques. American Journal of Primatology, 68, 738–744. doi:10.1002/ajp.20264.

    Article  PubMed  Google Scholar 

  • Westland, S., & Ripamonti, C. (2004). Computational colour science using MATLAB. Chichester, West Sussex: John Wiley & Sons.

    Book  Google Scholar 

  • Wickings, E. J., & Dixson, A. F. (1992). Testicular function, secondary sexual development, and social status in male mandrills (Mandrillus sphinx). Physiology & Behavior, 52, 909–916. doi:10.1016/0031-9384(92)90370-H.

    Article  CAS  Google Scholar 

  • Wyszecki, G., & Stiles, W. S. (1982). Color science: Concepts and methods, quantitative data and formulae. New York: John Wiley & Sons.

    Google Scholar 

  • Zylinski, S., Osorio, D., & Shohet, A. J. (2009). Perception of edges and texture in the camouflage of the common cuttlefish, Sepia officinalis. Philosophical Transactions of the Royal Society of London, Series B, 364, 439–448. doi:10.1098/rstb.2008.0264.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Daniel Osorio, Lauren Brent, Brenda Bradley, and two anonymous referees for helpful comments on the manuscript, and attendees at the primate coloration symposium at the 2008 International Primatological Symposium for discussion. M. Stevens thanks Innes Cuthill, Tom Troscianko, Julian Partridge, Alejandro Párraga, and many others for a range of advice and discussion. M. Stevens’ attendance at IPS 2008 was funded by the British Ecological Society and Girton College. M. Stevens was supported by a Research Fellowship from Girton College, Cambridge. M. Caswell Stoddard was supported by the Marshall Aid Commemoration Commission and Gonville and Caius College, Cambridge. J. Higham thanks Melissa Gerald and Ann MacLarnon for discussions on the measurement, analysis, and interpretation of color. J. Higham’s attendance at IPS 2008 was funded by Roehampton University.

Note:

A range of self-written MATLAB files for undertaking modeling of quantal catch data and camera calibration are available on request from the corresponding author (ms726@cam.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, M., Stoddard, M.C. & Higham, J.P. Studying Primate Color: Towards Visual System-dependent Methods. Int J Primatol 30, 893–917 (2009). https://doi.org/10.1007/s10764-009-9356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-009-9356-z

Keywords

Navigation