Skip to main content
Log in

Spider lures exploit insect preferences for floral colour and symmetry

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Sensory systems can capture only a fraction of available information, which creates opportunities for deceptive signalling. The sensory traps and sensory bias models have proven valuable for explaining how visual systems and environments shape the design of sexual signals, but their application to deceptive signals is largely limited to the context of pollination. Here we use the ‘jewelled’ orb-web spider Gasteracantha fornicata to experimentally test two longstanding hypotheses for the function of deceptive visual lures. Namely, that they: (1) exploit generalised preferences for conspicuous colouration (sensory bias), or (2) co-opt the otherwise-adaptive foraging response of prey toward flowers (sensory traps). In a field-based study we manipulated the conspicuous dorsal signals of female spiders along two axes—colour pattern and symmetry—to generate a gradient of floral resemblance and monitored the per-individual consequences for prey interception. As predicted by the sensory traps model, the most attractive phenotypes were those with flower-like radial symmetry and solid colour patterns, and their attractiveness equaled that of natural spiders. Taken with recent work demonstrating a close resemblance between G. fornicata and sympatric floral ‘models’, and pollinating insects as primary prey items, our results suggest that the deceptive colour-based lures of spiders function as inter-kingdom sensory traps via floral mimicry, and support the broader extension of sensory-based models to deceptive signalling contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basolo AL (1990) Female preference predates the evolution of the sword in swordtail fish. Science 250:808–810

    CAS  PubMed  Google Scholar 

  • Basolo AL (1995) Phylogenetic evidence for the role of a pre-existing bias in sexual selection. Proc R Soc Lond 259:307–311

    CAS  Google Scholar 

  • Basolo AL, Endler JA (1995) Sensory biases and the evolution of sensory systems. Trends Ecol Evol 10:489–489

    CAS  PubMed  Google Scholar 

  • Bennett KF, Ellison AM (2009) Nectar, not colour, may lure insects to their death. Biol Lett 5(4):469–472

    PubMed  PubMed Central  Google Scholar 

  • Bush AA, Yu DW, Herberstein ME (2008) Function of bright coloration in the wasp spider Argiope bruennichi (Araneae: Araneidae). Proc R Soc B 275(1640):1337–1342

    PubMed  Google Scholar 

  • Chittka L, Osorio D (2007) Cognitive dimensions of predator responses to imperfect mimicry. PLoS Biol 5(12):e339

    PubMed  PubMed Central  Google Scholar 

  • Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435

    PubMed  Google Scholar 

  • Christy JH (1995) Mimicry, mate choice, and the sensory trap hypothesis. Am Nat 146:171–181

    Google Scholar 

  • Christy J, Backwell P, Schober U (2003) Interspecific attractiveness of structures built by courting male fiddler crabs: experimental evidence of a sensory trap. Behav Ecol Sociobiol 53:84–91

    Google Scholar 

  • Chuang CY, Yang EC, Tso IM (2007a) Deceptive color signaling in the night: a nocturnal predator attracts prey with visual lures. Behav Ecol 19:237–244

    Google Scholar 

  • Chuang C-Y, Yang E-C, Tso I-M (2007b) Diurnal and nocturnal prey luring of a colorful predator. J Exp Biol 210:3830–3837

    PubMed  Google Scholar 

  • Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27

    CAS  Google Scholar 

  • Dafni A, Giurfa M (1999) The functional ecology of floral guides in relation to insect’s behaviour and vision. Evolutionary theory and processes: modern perspectives. Springer, Berlin, pp 363–383

    Google Scholar 

  • Dafni A, Kevan PG (1996) Floral symmetry and nectar guides: Ontogenetic constraints from floral development, colour pattern rules and functional significance. Bot J Linn Soc 120:371–377

    Google Scholar 

  • Dalrymple R, Kemp DJ, Flores-Moreno H, Laffan S, White T, Hemmings F, Tindall M et al (2015) Birds, butterflies and flowers in the tropics are not more colourful than those in higher latitudes. Global Ecol Biogeogr 24:848–860

    Google Scholar 

  • de Jager ML, Anderson B (2019) When is resemblance mimicry? Funct Ecol 00:1–11

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 146:S125–S153

    Google Scholar 

  • Endler JA, Basolo AL (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420

    CAS  PubMed  Google Scholar 

  • Endress PK (2001) Evolution of floral symmetry. Curr Opin Plant Biol 4:86–91

    CAS  PubMed  Google Scholar 

  • Garcia CM, Ramirez E (2005) Evidence that sensory traps can evolve into honest signals. Nature 434:501–505

    CAS  PubMed  Google Scholar 

  • Gaskett AC (2019) Testing for mimicry—an evolutionary biologist’s wish list. Funct Ecol 33(9):1580–1582

    Google Scholar 

  • Gaskett AC, Bernhardt P, Meyer R (2014) Color and sexual deception in orchids: progress toward understanding the functions and pollinator perception of floral color. In: Darwin’s Orchids: then and now. Chicago University Press, Chicago, pp 291–309

    Google Scholar 

  • Gawryszewski FM, Motta PC (2012) Colouration of the orb-web spider Gasteracantha cancriformis does not increase its foraging success. Ethol Ecol Evol 24(1):23–38

    Google Scholar 

  • Giurfa M, Backhaus W, Menzel R (1995) Color and angular orientation in the discrimination of bilateral symmetric patterns in the honeybee. Naturwissenschaften 82:198–201

    CAS  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382:458

    CAS  PubMed  Google Scholar 

  • Heiling AM, Herberstein ME, Chittka L (2003) Pollinator attraction: crab-spiders manipulate flower signals. Nature 421:334–334

    CAS  PubMed  Google Scholar 

  • Herberstein M, Craig C, Coddington J, Elgar M (2000) The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biol Rev Camb Philos Soc 75:649–669

    CAS  PubMed  Google Scholar 

  • Horridge A (2007) The preferences of the honeybee (Apis mellifera) for different visual cues during the learning process. J Insect Physiol 53:877–889

    CAS  PubMed  Google Scholar 

  • Horridge GA, Zhang SW (1995) Pattern vision in honeybees (Apis mellifera): flower-like patterns with no predominant orientation. J Insect Physiol 41:681–688

    CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    PubMed  Google Scholar 

  • Kay Q (1976) Preferential pollination of yellow-flowered morphs of Raphanus raphanistrum by Pieris and Eristalis spp. Nature 261:230–232

    Google Scholar 

  • Kazemi B, Gamberale-Stille G, Tullberg BS, Leimar O (2014) Stimulus salience as an explanation for imperfect mimicry. Curr Biol 24(9):965–969

    CAS  PubMed  Google Scholar 

  • Kemp DJ, Holmes C, Congdon BC, Edwards W (2013) Color polymorphism in spiny spiders (Gasteracantha fornicata): testing the adaptive significance of a geographically clinal lure. Ethology 17:1126–1137

    Google Scholar 

  • Kikuchi DW, Pfennig DW (2013) Imperfect mimicry and the limits of natural selection. Q Rev Biol 88(4):297–315

    PubMed  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42:147–177

    CAS  PubMed  Google Scholar 

  • Lehrer M, Horridge GA, Zhang S, Gadagkar R (1995) Shape vision in bees: innate preference for flower-like patterns. Phil Trans R Soc B 347:123–137

    Google Scholar 

  • Lehtonen J, Whitehead MR (2014) Sexual deception: coevolution or inescapable exploitation? Current Zoology 60(1):52–61

    Google Scholar 

  • Lunau K (1988) Innate and learned behaviour of flower-visiting hoverflies-flower-dummy experiments with Eristalis pertinax (scopoli) (Diptera, syrphidae). Zoological Journal 92:487–499

    Google Scholar 

  • Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19

    Google Scholar 

  • Lunau K, Wester P (2017) Mimicry and deception in pollination. Advances in botanical research. Oxford Academic Press, Oxford, pp 259–279

    Google Scholar 

  • Maia R, Rubenstein DR, Shawkey MD (2013) Key ornamental innovations facilitate diversification in an avian radiation. Proc Natl Acad Sci 110:10687–10692

    CAS  PubMed  Google Scholar 

  • Maia R, Gruson H, Endler JA, White TE (2019) pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol Evol 10:1097–1107

    Google Scholar 

  • Neal PR, Dafni A, Giurfa M (1998) Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu Rev Ecol Syst 29:345–373

    Google Scholar 

  • Nelson XJ, Garnett DT, Evans CS (2010) Receiver psychology and the design of the deceptive caudal luring signal of the death adder. Anim Behav 79(3):555–561

    Google Scholar 

  • Nentwig W (1985) Prey analysis of four species of tropical orb-weaving spiders (Araneidae) and a comparison with araneids of the temperate zone. Oecologia 66:580–594

    PubMed  Google Scholar 

  • Nentwig W (1987) The prey of spiders. Ecophysiology of spiders. Springer, New York, pp 249–263

    Google Scholar 

  • O’Hanlon J, Li D, Norma-Rashid Y (2013) Coloration and morphology of the orchid mantis Hymenopus coronatus (Mantodea: Hymenopodidae). J Orthoptera Res 22:35–44

    Google Scholar 

  • O’Hanlon JC, Holwell GI, Herberstein ME (2014) Pollinator deception in the orchid mantis. Am Nat 183:126–132

    PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R (2018) nlme: linear and nonlinear mixed effects models

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rao D, Castaneda-Barbosa E, Nunez-Beverido N, Diaz-Fleischer F (2015) Foraging benefits in a colour polymorphic neotropical orb web spider. Ethology 121:187–195

    Google Scholar 

  • Reiter N, Bohman B, Flematti GR, Phillips RD (2018) Pollination by nectar-foraging thynnine wasps: evidence of a new specialized pollination system for Australian orchids. Bot J Linn Soc 188(3):327–337

    Google Scholar 

  • Rodd FH, Hughes KA, Grether GF, Baril CT (2002) A possible non-sexual origin of mate preference: are male guppies mimicking fruit? Proc R Soc Lond B 269:475–481

    Google Scholar 

  • Ryan MJ, Cummings ME (2013) Perceptual biases and mate choice. Annu Rev Ecol Evol Syst 44:437–459

    Google Scholar 

  • Schaefer HM, Ruxton GD (2008) Fatal attraction: carnivorous plants roll out the red carpet to lure insects. Biol Let 4:153–155

    Google Scholar 

  • Schaefer HM, Ruxton GD (2009) Deception in plants: mimicry or perceptual exploitation? Trends Ecol Evol 24:676–685

    PubMed  Google Scholar 

  • Song B-M, Lee C-H (2018) Toward a mechanistic understanding of color vision in insects. Frontiers in Neural Circuits 12:16. 6

    PubMed  PubMed Central  Google Scholar 

  • Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429:758

    CAS  PubMed  Google Scholar 

  • Thoen HH, How MJ, Chiou T-H, Marshall J (2014) A different form of color vision in mantis shrimp. Science 343:411–413

    CAS  PubMed  Google Scholar 

  • Tso I-M, Lin C-W, Yang E-C (2004) Colourful orb-weaving spiders, Nephila pilipes, through a bee’s eyes. J Exp Biol 207:2631–2637

    PubMed  Google Scholar 

  • West-Eberhard MJ (1979) Sexual selection, social competition, and evolution. Proc Am Philos Soc 123:222–34

    Google Scholar 

  • White TE (2017) Jewelled spiders manipulate colour-lure geometry to deceive prey. Biology letters 13:20170027

    PubMed  PubMed Central  Google Scholar 

  • White TE, Kemp DJ (2015) Technicolour deceit: A sensory basis for the study of colour-based lures. Anim Behav 105:231–243

    Google Scholar 

  • White TE, Kemp DJ (2016) Colour polymorphic lures target different visual channels in prey. Evolution 70:1398–1408

    PubMed  Google Scholar 

  • White TE, Kemp DJ (2017) Colour polymorphic lures exploit innate preferences for spectral versus luminance cues in dipteran prey. BMC Evol Biol 17:191

    PubMed  PubMed Central  Google Scholar 

  • White TE, Kemp DJ (2019) Spider lures exploit insect preferences for floral colour and symmetry. bioRxiv, 693648

  • White TE, Dalrymple RL, Herberstein ME, Kemp DJ (2017) The perceptual similarity of orb-spider prey lures and flower colours. Evol Ecol 1:1–20

    Google Scholar 

  • Ximenes NG, Gawryszewski FM (2018) Prey and predators perceive orb-web spider conspicuousness differently: evaluating alternative hypotheses for color polymorphism evolution. Curr Zool 65:559–570

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Matthew Symonds, Anne Gaskett, and two anonymous reviewers for their thoughtful feedback, which greatly improved the manuscript. TEW thanks Elizabeth Mulvenna and Cormac White for their endless support. We have no conflicts of interest to declare.

Funding

None to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. White.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, T.E., Kemp, D.J. Spider lures exploit insect preferences for floral colour and symmetry. Evol Ecol 34, 543–553 (2020). https://doi.org/10.1007/s10682-020-10047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-020-10047-z

Keywords

Navigation