Skip to main content
Log in

The role of genes in understanding the evolutionary ecology of reef building corals

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

A key tool in evolutionary ecology is information about the temporal dynamics of species over time. Paleontology has long been the major source of this information, however, a very different source of temporal data resides in the variation of genes within and between species. These data provide an independent way to date species divergence but can also uniquely reveal processes such as gene introgression between species and demographic isolation within species. Genetic tools are particularly useful for understanding genera with closely related species that can potentially hybridize, such as reef building corals. Here we use genetic data from four loci (3 introns and 1 mitochondrial) to assay divergence and gene flow in Caribbean corals. The data show that there is persistent gene flow between species in the genus Acropora, but that this gene flow is unidirectional and highly variable among loci. Selection against introgressed alleles is high enough at one locus, Mini-collagen, to prevent gene flow between species. By contrast, selection against mitochondrial introgression appears much weaker, with 40–80 times higher rates of inter-specific gene flow than for any nuclear locus we examined. The same loci also show that gene flow among locations within species is locally restricted, but is nevertheless much higher between populations than between species. Interpretation of population data is complicated by the variable nature of selection on introgressed alleles, and some patterns of genetic differentiation might be driven by local introgression and selection. The combination of inter-specific and intra-specific data using the same loci treated in a genealogical framework helps resolve complications due to introgression and helps paint a picture of the evolution and maintenance of species in a complex spatial and temporal framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390

    Article  PubMed  CAS  Google Scholar 

  • Budd AF, Wallace CC (2008) First record of the Indo-Pacific reef coral genus Isopora in the Caribbean region: two new species from the Neogene of Caracao, Netherlands Antilles. Paleontology 51:1387–1401

    Article  Google Scholar 

  • Budd AF, Stemann TA, Johnson KG (1994) Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. J Paleontol 68:951–977

    Google Scholar 

  • Burton RS, Lee B-N (1994) Nuclear and mitochondrial gene genealogies and allozyme polymorphisms across a major phylogeographic break in the copepod Tigriopus californicus. Proc Natl Acad Sci USA 91:5197–5201

    Article  PubMed  CAS  Google Scholar 

  • Cheetham AH, Jackson JBC, Hayek LAC (1993) Quantitative genetics of bryozoan phenotypic evolution.1. Rate tests for random change versus selection in differentiation of living species. Evolution 47:1526–1538

    Article  Google Scholar 

  • Cheetham AH, Jackson JBC, Hayek LAC (1994) Quantitative genetics of bryozoan phenotypic evolution.2. Analysis of selection and random change in fossil species using reconstructured genetic parameters. Evolution 48:360–375

    Article  Google Scholar 

  • Cheetham AH, Jackson JBC, Hayek LAC (1995) Quantitative genetics of bryozoan phenotypic evolution.3. Phenotypic plasticity and the maintenance of genetic variation. Evolution 49:290–296

    Article  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  PubMed  CAS  Google Scholar 

  • Double MC, Peakall R, Beck NR, Cockburn A (2005) Dispersal, philopatry, and infidelity: dissecting local genetic structure in Superb Fairy Wrens (Malurs cyaneus). Evolution 59:625–635

    PubMed  CAS  Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    PubMed  CAS  Google Scholar 

  • Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626

    Article  PubMed  CAS  Google Scholar 

  • Harrison RG (1990) Hybrid zones: windows on evolutionary process. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol 7. Oxford University Press, Oxford, UK, pp 69–128

  • Hartl DL, Clark A (1997) Principles of population genetics. Sinauer Press, Sunderland

    Google Scholar 

  • Hellberg M (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24

    Article  PubMed  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  PubMed  CAS  Google Scholar 

  • Hillis DM, Moritz C, Mable BK (eds) (1996) Molecular systematics. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Jackson JBC, Cheetham AH (1994) Phylogeny reconstruction and the tempo of speciation in cheilostome Bryozoa. Paleobiology 20:407–423

    Google Scholar 

  • Jackson JBC, Erwin DH (2006) What can we learn about ecology and evolution from the fossil record? Trends Ecol Evol 21:322–328

    Article  PubMed  Google Scholar 

  • Jackson JBC, Johnson KG (2000) Life in the last few million years. Paleobiology 26:221–235

    Article  Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638

    Article  PubMed  CAS  Google Scholar 

  • Kelly RP, Oliver TA, Sivasundar A, Palumbi SR (2010) A method for detecting population genetic structure in diverse, high gene-flow species. J Hered 101:423–436

    Article  PubMed  CAS  Google Scholar 

  • Knowlton N, Jackson JBC (1994) New taxonomy and niche partitioning on coral reeds—jack of all trades or master of some. Trends Ecol Evol 9:7–9

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Marko PB, Hart MW (2011) Retrospective coalescent methods and the reconstruction of metapopulation histories in the sea. Evol Ecol. doi:10.10007/s10682-011-9467-9

  • Navarro A, Barton NH (2003a) Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution 57:447–459

    PubMed  Google Scholar 

  • Navarro A, Barton NH (2003b) Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300:321–324

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: an MCMC approach. Genetics 158:885–896

    PubMed  CAS  Google Scholar 

  • Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98:12084–12088

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Barrientos D, Noor MAF (2005) Evidence for a one-allele assortative mating locus. Science 310:1467

    Article  PubMed  CAS  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Church SA, Morjan CL (2004) Integration of populations and differentiation of species. New Phytol 161:59–69

    Article  PubMed  CAS  Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642

    Article  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Ver 2. Genetics and Biometry Lab, Dept of Anthropology, University of Geneva, Geneva

    Google Scholar 

  • Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910

    Article  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  PubMed  CAS  Google Scholar 

  • Taylor MS, Hellberg ME (2005) Marine radiations at small geographic scales: speciation in Neotropical reef gobies (Elacatinus). Evolution 59:374–385

    PubMed  Google Scholar 

  • van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc R Soc Lond B Biol Sci 266:179–183

    Article  Google Scholar 

  • van Oppen MJH, Willis BL, Vugt HV, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH, McDonald BJ, Willis B, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting or morphological convergence? Mol Biol Evol 18:1315–1329

    Article  PubMed  Google Scholar 

  • van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar Biol 144:9–18

    Article  Google Scholar 

  • Veron JEN (1981) The species concept in ‘Scleractinia of Eastern Australia’. In: Proceedings of the 4th international coral reef symposium 2:183–186

  • Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. University of New South Wales Press, Sydney

  • Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296:2023–2025

    Article  PubMed  CAS  Google Scholar 

  • Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicomis: implications for the recovery of endangered reefs. J Hered 98:40–50

    Article  PubMed  CAS  Google Scholar 

  • Voolstra CR, Sunagawa S, Matz MV, Bayer T, Aranda M, Buschiazzo E, DeSalvo MK, Lindquist E, Szmant AM, Coffroth MA, Medina M (2011) Rapid evolution of coral proteins responsible for interaction with the environment. PLoS ONE 6:e20392

    Article  PubMed  CAS  Google Scholar 

  • Wallace CC (1999) Staghorn corals of the world: a revision of the coral genus Acropora (Scleractinia; Astrocoeniina; Acroporidae) worldwide, with emphasis on morphology, phylogeny and biogeography. CSIRO, Collingwood, Victoria, Australia

  • Wang RL, Wakeley J, Hey J (1997) Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 147:1091–1106

    PubMed  CAS  Google Scholar 

  • Whitlock M, McCauley D (1999) Indirect measures of gene flow and migration: FST not equal to 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Willis BL, van Oppen MJH, Miller DJ, Vollmer SV, Ayre DJ (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol Syst 37:489–517

    Article  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Hum Genet 15:323–354

    Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

  • Wu CI, Ting CT (2004) Genes and speciation. Nat Rev Genet 5:114–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank NSF’s BioComplexity Program, the Gordon and Betty Moore Foundation and NOAA for funding. We also thank Ryan Kelly, Arjun Sivasundar, Melissa Pespeni, Heather Galindo, Malin Pinsky and two anonymous reviewers for discussion and suggestions on earlier drafts of the manuscript. We also thank Jeremy Jackson for ideas and inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Palumbi.

Additional information

In honor of Jeremy B. C. Jackson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palumbi, S.R., Vollmer, S., Romano, S. et al. The role of genes in understanding the evolutionary ecology of reef building corals. Evol Ecol 26, 317–335 (2012). https://doi.org/10.1007/s10682-011-9517-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9517-3

Keywords

Navigation