Skip to main content
Log in

Genome-wide SNP-based diversity analysis and association mapping in linseed (Linum usitatissimum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The present study was aimed to characterize linseed accessions for genetic diversity, population structure and establish marker-trait association using SNP markers. A total of 10057 SNPs were identified in 86 accessions through genotyping by sequencing approach of next-generation sequencing. The polymorphism information content (PIC) value was found to be in the range from 0.08 to 0.30 with an average of 0.27 ± 0.09. Moderate value of PIC (0.30–0.60) was shown by 48% SNPs while remaining had low PIC values. Based on Jaccard’s similarity coefficient, the genetic distance varied from 0.17 to 0.65 with an average of 0.42 ± 0.07. Based on genetic relatedness among the accessions, CG 79, CG 86, GP 25, GP 31 GP 33, GP 47, and GP 49 were found to be most divergent and could be potential accessions for the future breeding program of linseed to create further genetic variability. The neighbor-joining clustering revealed that 86 genotypes were grouped into four clusters with 28, 8, 21 and 29 accessions respectively. An admixture model-based clustering method in STRUCTURE was also implemented which grouped all the accessions in four subpopulations (K = 4) as similar to NJ clustering. One pleiotropic SNPs was observed for capsule weight/plant and seed weight/plant which could assist in their simultaneous improvement during the breeding programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adugna W, Labuschagne MT, Viljoen CD (2006) The use of morphological and AFLP markers in diversity analysis of linseed. Biodivers Conserv 15:3193–3205

    Article  Google Scholar 

  • Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM, Muttoni G (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081. https://doi.org/10.1534/genetics.112.147710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bibi T, Mustafa HSB, Ejaz-ul-Hasan Rauf S, Mahmood T, Ali Q (2015) Analysis of genetic diversity in linseed using molecular markers. Life Sci J 12(4s):28–37

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL, software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. Wiley, New York, pp 11–86

    Google Scholar 

  • Brown AHD (1989) Core collections—a practical approach to genetic-resources management. Genome 31:818–824

    Article  Google Scholar 

  • Chandrawati, Yadav HK (2017) Development of linkage map and mapping of QTLs for oil content and yield attributes in linseed (Linum usitatissimum L.). Euphytica 213:258

    Article  Google Scholar 

  • Chandrawati, Maurya R, Singh PK, Ranade SA, Yadav HK (2014) Diversity analysis in Indian genotypes of linseed (Linum usitatissimum L.) using AFLP marker. Gene 549:171–178

    Article  CAS  PubMed  Google Scholar 

  • Chandrawati, Singh N, Kumar R, Kumar S, Singh PK, Yadav VK, Ranade SA, Yadav HK (2017) Genetic diversity, population structure and association analysis in linseed (Linum usitatissimum L.). Physiol Mol Biol Plants 23(1):207–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton B, Ehrensing D (2001) Fiber and oilseed flax performance annual report. Oregon State University, Corvallis

    Google Scholar 

  • Chen W, Hou L, Zhang Z, Pang X, Li Y (2017) Genetic diversity, population structure and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by sequencing and SSR Markers. Front Plant Sci 8:575

    PubMed  PubMed Central  Google Scholar 

  • Cloutier S, Ragupathy R, Zhixia N, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451

    Article  CAS  Google Scholar 

  • Cui C, Mei H, Liu Y, Zhang H, Zhang Y (2017) Genetic diversity, population structure, and linkage disequilibrium of an association mapping panel revealed by genome wide SNP markers in sesame. Front Plant Sci 8:1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, Von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evano method. Conserv Genet Resour 4:359–366

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK et al (2017) Estimating genomic diversity and population differentiation—an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Rowland GG, Duguid S, Richards KW (2003) RAPD analysis of 54 North American flax cultivars. Crop Sci 43(4):1510

    Article  Google Scholar 

  • Gapare W, Conaty W, Zhu Q, Liu S, Stiller W, Llewellyn D, Wilson I (2017) Genome-wide association study of yield components and fibre quality traits in a cotton germplasm diversity panel. Euphytica 213:66

    Article  Google Scholar 

  • Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9(2):e90346

    Article  PubMed  PubMed Central  Google Scholar 

  • Green AG (1986) Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theor Appl Genet 72:654–661

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109–147

    Article  CAS  PubMed  Google Scholar 

  • Iquira E, Humira S, François B (2015) Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol 15:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371

    Article  CAS  PubMed  Google Scholar 

  • Knowler WC, Williams RC, Pettitt DJ, Steinberg AG (1988) Gm3;5, 13, 14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am J Hum Genet 43:520–526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S (2015) QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theor Appl Genet 128:965–984

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li H, Wen Z, Fan X, Li Y, Guan R, Guo Y, Wang S, Wang D, Qiu L (2017) Comparison of genetic diversity between Chinease and American Soybean (Glycine max (L.)) accessions revealed by high-density SNPs. Front Plant Sci 8:2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu YL, Yan JB, Guimarães CT, Taba S, Hao ZF, Gao SB et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  CAS  PubMed  Google Scholar 

  • Mohlke KL, Lange EM, Valle TT, Ghosh S, Magnuson VL, Silander K, Watanabe RM, Chines PS, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2001) Linkage disequilibrium between microsatellite markers extends beyond 1 cM on chromosome 20 in Finns. Genome Res 11:1221–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble TJ, Tao Y, Mace ES, Williams B, Jordan DR, Douglas CA, Mundree SA (2018) Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci 8:2012

    Article  Google Scholar 

  • Owens B, Lipka A, Magallanes-Lundback M, Tiede T, Diepenbrock C, Kandianis C, Kim E, Cepela J, Mateos-Hernandez M, Buell C et al (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield Scince Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Peterson GW, Dong Y, Horbach C, Fu Y (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6:665–680

    Article  CAS  Google Scholar 

  • Pham DT, Bui MT, Werlemark G et al (2009) A study of genetic diversity of sesame (Sesamum indicum L.) in Vietnam and Cambodia estimated by RAPD markers. Genet Resour Crop Evol 56:679–690

    Article  CAS  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajwade AV, Arora RS, Kadoo NY, Harsulkar AM, Ghorpade PB, Gupta VS (2010) Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Mol Biotechnol 45:161–170

    Article  CAS  PubMed  Google Scholar 

  • Roose-Amsaleg C, Cariou Pham E, Vautrin D, Tavernier R, Solignac M (2006) Polymorphic microsatellite loci in Linum usitatissimum. Mol Ecol Notes 6:796–799

    Article  CAS  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Banerjee N, Khan MS, Yadav S, Kumar S, Duttamajumder SK, Lal RJ, Patel JD, Guo H, Zhang D, Paterso AH (2016) Identifcation of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping. Mol Genet Genomics 291(3):1363–1377

    Article  CAS  PubMed  Google Scholar 

  • Soto-Cerda BJ, Maureira-Butler I, Munoz G, Rupayan A, Cloutier S (2011) SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed 30:875–888

    Article  Google Scholar 

  • Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013a) Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Cerda BJ, Diederichsen A, Ragupathy R, Cloutier S (2013b) Genetic characterization of a core collection of Flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biol 13:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014) Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. Theor Appl Genet 127:881–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM (2018) Genome wide association analysis of Mucilage and hull content in Flax (Linum usitatissimum L.) seeds. Int J Mol Sci 19(10):2870

    Article  PubMed Central  Google Scholar 

  • Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187:367–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  CAS  PubMed  Google Scholar 

  • Vos PG, Joao Paulo M, Vorrips RE, Visser RGF et al (2017) Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor Appl Genet 130:123–135

    Article  PubMed  Google Scholar 

  • Weddell BJ (2002) Conserving living natural resources: in the context of a changing world. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wei X, Jackson PA, Hermann S, Kilian A, Heller-Uszynska K, Deomano E (2010) Simultaneously accounting for population structure, genotype by environment interaction, and spatial variation in marker-trait associations in sugarcane. Genome 53:973–981

    Article  PubMed  Google Scholar 

  • Xie D, Dai Z, Yang Z, Tang Q, Sun J, Yang X, Song X, Lu Y, Zhao D, Zhang L, Su J (2018) Genomic variations and association study of agronomic traits in flax. BMC Genomics 19:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan J, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi Vroh, Yamasaki M, Doebley JF et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X (2018) Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC Plant Biol 18(1):160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Director, CSIR-NBRI, Lucknow for providing the facilities to carry out the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Kumar Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Agarwal, N. & Yadav, H.K. Genome-wide SNP-based diversity analysis and association mapping in linseed (Linum usitatissimum L.). Euphytica 215, 139 (2019). https://doi.org/10.1007/s10681-019-2462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2462-x

Keywords

Navigation