Skip to main content
Log in

QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The combined SSR-SNP map and 20 QTL for agronomic and quality traits will assist in marker assisted breeding as well as map-based cloning of key genes in linseed.

Abstract

Flax is an important nutraceutical crop mostly because it is a rich source of omega-3 fatty acids and antioxidant compounds. Canada is the largest producer and exporter of oilseed flax (or linseed), creating a growing need to improve crop productivity and quality. In this study, a genetic map was constructed based on selected 329 single nucleotide polymorphic markers and 362 simple sequence repeat markers using a recombinant inbred line population of 243 individuals from a cross between the Canadian varieties CDC Bethune and Macbeth. The genetic map consisted of 15 linkage groups comprising 691 markers with an average marker density of one marker every 1.9 cM. A total of 20 quantitative trait loci (QTL) were identified corresponding to 14 traits. Three QTL each for oleic acid and stearic acid, two QTL each for linoleic acid and iodine value and one each for palmitic acid, linolenic acid, oil content, seed protein, cell wall, straw weight, thousand seed weight, seeds per boll, yield and days to maturity were identified. The QTL for cell wall, straw weight, seeds per boll, yield and days to maturity all co-located on linkage group 4. Analysis of the candidate gene regions underlying the QTL identified proteins involved in cell wall and fibre synthesis, fatty acid biosynthesis as well as their metabolism and yield component traits. This study provides the foundation for assisting in map-based cloning of the QTL and marker assisted selection of a wide range of quality and agronomic traits in linseed and potentially fibre flax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adugna W, Labuschagne MT, Viljoen CD (2006) The use of morphological and AFLP markers in diversity analysis of linseed. Biodivers Conserv 15:3193–3205

    Article  Google Scholar 

  • Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Giri AP, Gupta VS (2012) Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development. J Proteome Res 11:6264–6276

    CAS  PubMed  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Boutilier K, Hattori J, Baum BR, Miki BL (1999) Evolution of 2S albumin seed storage protein genes in the Brassicaceae. Biochem Syst Ecol 27:223–234

    Article  CAS  Google Scholar 

  • Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119:53–63

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Ragupathy R, Niu Z, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451

    Article  CAS  Google Scholar 

  • Cloutier S, Miranda E, Ragupathy R, Radovanovic N, Reimer E, Walichnowski A, Ward K, Rowland G, Duguid S (2012) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795

    Article  PubMed Central  PubMed  Google Scholar 

  • Conti A, Rogers J, Verdejo P, Harding CR, Rawlings AV (1996) Seasonal influences on stratum corneum ceramide 1 fatty acids and the influence of topical essential fatty acids. Int J Cosmet Sci 18:1–12

    Article  CAS  PubMed  Google Scholar 

  • Cullis C (2007) Flax: genome mapping and molecular breeding in plants. Springer, Berlin

    Book  Google Scholar 

  • Dhakal HN, Zhang ZY, Guthrie R, Macmullen J, Bennett N (2013) Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydr Polym 96:1–8

    Article  CAS  PubMed  Google Scholar 

  • Diederichsen A, Ulrich A (2009) Variability in stem fibre content and its association with other characteristics in 1177 flax (Linum usitatissimum L) genebank accessions. Ind Crop Prod 30:33–39

    Article  CAS  Google Scholar 

  • Dribnenki JCP, Green AG (1995) Linola™ ‘947’ low linolenic acid flax. Can J Plant Sci 75:201–202

    Article  Google Scholar 

  • Dribnenki JCP, McEachern SF, Chen Y, Green AG, Rashid KY (2007) 2149 solin (low linolenic flax). Can J Plant Sci 87:297–299

    Article  Google Scholar 

  • Duguid SD, Kenaschuk EO, Rashid KY (2003) Macbeth flax. Can J Plant Sci 83:803–805

    Article  Google Scholar 

  • Eskandari M, Cober E, Rajcan I (2013) Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean. Theor Appl Genet 126:1839–1850

    Article  CAS  PubMed  Google Scholar 

  • Everaert I, Riek JD, Loose MD, Waes JV, Bockstaele EV (2001) Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data. Plant Var Seeds 14:69–87

    Google Scholar 

  • FAOSTAT (2014) Production of crops: flax fibre and linseed: area harvested and production (tonnes). http://faostat3faoorg/. Accessed June 2014

  • Friedt W, Bickert C, Schaub H (1995) In vitro breeding of high linolenic, doubled haploid lines of linseed (Linum usitatissimum L.) via androgenesis. Plant Breed 114:322–326

    Article  Google Scholar 

  • Fu Y-B, Peterson G, Diederichsen A, Richards KW (2002) RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genet Resour Crop Evol 49:253–259

    Article  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green AG (1986) Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theor Appl Genet 72:654–661

    Article  CAS  PubMed  Google Scholar 

  • Green A (1995) New linseed breed low in ALA. Australian New Crops Newsletter

  • Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z (2013) Genetic bases of rice grain shape: so many genes, so little known. Trends Plant Sci 18:218–226

    Article  CAS  PubMed  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jourjon M-F, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinfromatics 21:128–130

    Article  CAS  Google Scholar 

  • Kang X, Li W, Zhou Y, Ni M (2013) A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genet 9:e1003347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kenaschuk EO, Hoes JA (1986) NorLin flax. Can J Plant Sci 66:171–173

    Article  Google Scholar 

  • Kenaschuk EO, Rashid KY (1993) AC Linora flax. Can J Plant Sci 73:839–841

    Article  Google Scholar 

  • Kim Y, Ilich JZ (2011) Implications of dietary [alpha]-linolenic acid in bone health. Nutrition 27:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, You FM, Cloutier S (2012) Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genom 13:684

    Article  CAS  Google Scholar 

  • Leyva DR, Zahradka P, Ramjiawan B, Guzman R, Aliani M, Pierce GN (2011) The effect of dietary flaxseed on improving symptoms of cardiovascular disease in patients with peripheral artery disease rationale and design of the FLAX-PAD randomized controlled trial. Contemp Clin Trials 32:724–730

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin CS, Poushinsky G (1985) A modified augmented design (type 2) for rectangular plots. Can J Plant Sci 65:743–749

    Article  Google Scholar 

  • Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30:1231–1235

    Article  CAS  Google Scholar 

  • Ma H-S, Liang D, Shuai P, Xia X-L, Yin W-L (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muhlhausen S, Kollmar M (2013) Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins. BMC Evol Biol 13:202

    Article  PubMed Central  PubMed  Google Scholar 

  • Muschietti J, Dircks L, Vancanneyt G, McCormick S (1994) LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J 6:321–338

    Article  CAS  PubMed  Google Scholar 

  • Oh TJ, Gorman M, Cullis CA (2000) RFLP and RAPD mapping in flax (Linum usitatisimum). Theor Appl Genet 101:590–593

    Article  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  PubMed  Google Scholar 

  • Peng F, Weselake R (2011) Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis. BMC Genom 12:286

    Article  CAS  Google Scholar 

  • Prado N, Alché JdD, Casado-Vela J, Mas S, Villalba M, Rodríguez R, Batanero E (2013) Nanovesicles are secreted during pollen germination and pollen tube growth: a possible role in fertilization. Mol Plant. doi:10.1093/mp/sst153

    PubMed  Google Scholar 

  • Ragupathy R, Rathinavelu R, Cloutier S (2011) Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genom 12:217

    Article  CAS  Google Scholar 

  • Reimmann C, Dudler R (1993) Circadian rhythmicity in the expression of a novel light-regulated rice gene. Plant Mol Biol 22:165–170

    Article  CAS  PubMed  Google Scholar 

  • Riendeau D, Rodriguez A, Meighen E (1982) Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. J Biol Chem 257:6908–6915

    CAS  PubMed  Google Scholar 

  • Roose-Amsaleg C, Cariou-Pham E, Vautrin D, Tavernier R, Solignac M (2006) Polymorphic microsatellite loci in Linum usitatissimum. Mol Ecol Notes 6:796–799

    Article  CAS  Google Scholar 

  • Rowland GG (1991) An EMS-induced low-linolenic-acid mutant in McGregor flax (Linum usitatissimum L.). Can J Plant Sci 71:393–396

    Article  CAS  Google Scholar 

  • Rowland GG, Hormis YA, Rashid KY (2002) CDC Bethune flax. Can J Plant Sci 82:101–102

    Article  Google Scholar 

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids 1. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Keppler B, Lichtenberg J, Gu D, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014a) Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. Theor Appl Genet 127:881–896

    Article  PubMed Central  PubMed  Google Scholar 

  • Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A, Cloutier S (2014b) Genomic regions underlying agronomic traits in linseed (Linum usitatissimum L.) as revealed by association mapping. J Integr Plant Biol 56:75–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Green AG, Bittisnich D, Mendham N, Lagudah ES (1998) Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum). Theor Appl Genet 97:633–641

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stegniĭ VN, Chudinova IuV, Salina EA (2000) RAPD analysis of the flax (Linum usitatissimum L.) varieties and hybrids of various productivity. Genetics 36:1370–1373

    Google Scholar 

  • St-Pierre B, Luca VD (2000) Chapter nine evolution of acyltransferase genes: origin and diversification fo the BAHD superfamily of acyltransferases involved in secondary metabolism. In: John T, Romeo RILV, Vincenzo De L (eds) Recent advances in phytochemistry. Elsevier, Amsterdam, pp 285–315

    Google Scholar 

  • Summerscales J, Dissanayake NPJ, Virk AS, Hall W (2010) A review of bast fibres and their composites. Part1––fibres as reinforcements. Compos Part A Appl Sci Manuf 41:1329–1335

    Article  Google Scholar 

  • Sveinsson S, McDill J, Wong GK, Li J, Li X, Deyholos MK, Cronk QC (2013) Phylogenetic pinpointing of a paleopolyploidy event within the flax genus (Linum) using transcriptomics. Ann Bot. doi:10.1093/aob/mct306

    PubMed Central  PubMed  Google Scholar 

  • Thambugala D, Cloutier S (2014) Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.). J Appl Genet 55:423–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Truksa M, MacKenzie Samuel L, Qiu X (2003) Molecular analysis of flax 2S storage protein conlinin and seed specific activity of its promoter. Plant Physiol Biochem 41:141–147

    Article  CAS  Google Scholar 

  • Vales MI, Schon CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  CAS  PubMed  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D, Alting-Mees M, Nowak J, Cloutier S, Deyholos M, Bekkaoui F, Sharpe A, Wang E, Rowland G, Selvaraj G, Datla R (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11:74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe A, Wong GK, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  PubMed  Google Scholar 

  • Wei W-H, Chen B, Yan X-H, Wang L-J, Zhang H-F, Cheng J-P, Zhou X-A, Sha A-H, Shen H (2008) Identification of differentially expressed genes in soybean seeds differing in oil content. Plant Sci 175:663–673

    Article  CAS  Google Scholar 

  • Westcott NA, Muir AD (2003) Flax seed lignan in disease prevention and health promotion. Phytochem Rev 2003:401–417

    Article  Google Scholar 

  • Yang J, Li C, Gong X, Gupta S, Lance R, Zhang G, Loughman R, Zhu J (2013) Large population with low marker density verse small population with high marker density for qtl mapping: a case study for mapping qtl controlling barley net blotch resistance. In: Zhang G, Li C, Liu X (eds) Advance in barley sciences. Springer, The Netherlands, pp 301–315

    Chapter  Google Scholar 

  • You FM, Deal KR, Wang J, Britton MT, Fass JN, Lin D, Dandekar A, Leslie CA, Aradhya M, Luo MC, Dvorak J (2012) Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms. BMC Genom 13:354

    Article  CAS  Google Scholar 

  • You FM, Duguid SD, Thambugala D, Cloutier S (2013) Statistical analysis and field evaluation of the type 2 modified augmented design (MAD) in phenotyping of flax (Linum usitatissimum) germplasms in multiple environments. Aust J Crop Sci 7:1789–1800

    Google Scholar 

  • You FM, Li P, Kumar S, Ragupathy R, Li Z, Fu YB, Cloutier S (2014) Genome-wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (linum usitatissimum L). J Proteomics Bioinform 7:310–326

    CAS  Google Scholar 

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Gord Penner and Evelyn Loewen, the Cloutier lab members and the breeding teams at the Morden Research Station and the Crop Development Centre for technical assistance. We are grateful to Andrzej Walichnowski for his proofreading of the manuscript. This work was conducted as part of the Total Utilization Flax Genomics (TUFGEN) project funded by Genome Canada and co-funded by the Government of Manitoba, the Flax Council of Canada, the Saskatchewan Flax Development Commission, Agricultural Development Fund and the Manitoba Flax Growers Association. Project management and support by Genome Prairie are also gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Cloutier.

Additional information

Communicated by A. J. Bervillé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2015_2483_MOESM1_ESM.pdf

Online Resource 1 List containing 100 bp flanking sequence on either side of each SNP used in the current study (PDF 222 kb)

122_2015_2483_MOESM2_ESM.pdf

Online Resource 2 Complete SSR-SNP based genetic map of the linseed CDC Bethune/Macbeth recombinant inbred line population Supplementary material 2 (PDF 195 kb)

122_2015_2483_MOESM3_ESM.pdf

Online Resource 3 List of all annotated genes discovered underlying the QTL identified for 14 traits. The genes were identified using the CDC Bethune annotated sequence available at http://phytozome.jgi.doe.gov/ (PDF 4210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., You, F.M., Duguid, S. et al. QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theor Appl Genet 128, 965–984 (2015). https://doi.org/10.1007/s00122-015-2483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2483-3

Keywords

Navigation