Skip to main content

Advertisement

Log in

Association study of multiple antibiotic resistance and virulence: a strategy to assess the extent of risk posed by bacterial population in aquatic environment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study explored the association between multiple antibiotic resistance (MAR) index and virulence index to determine what percent of environmental antibiotic-resistant (eARB) bacteria could pose threat as potential pathogen. 16srRNA-based sequencing of 113 non-duplicate isolates identified majority of them to be gram negative belonging to Enterobacter, Pseudomonas, Aeromonas, Proteus, Acinetobacter, and Klebsiella. Statistical comparison of MAR indices of the abovementioned genera indicated differences in the median values among the groups (p < 0.001). Pair-wise multiple comparison by Dunn’s method indicated significant difference in MAR indices (p < 0.05), based on which multiple antibiotic resistance phenotype could be ranked in the order Pseudomonas > Klebsiella = Acinetobacter > Proteus > Aeromonas > Enterobacter. Association between MAR index and virulence index revealed that 25% of isolates in the population under study posed high threat to human/animal or both; out of which 75% isolates belonged to genus Pseudomonas. Based on observations of comparative analysis of the six gram-negative genera, it could be concluded that Pseudomonas isolates from environment pose significantly high threat as potential pathogens while Enterobacter isolates posed no threat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham, W. R. (2011). Megacities as sources for pathogenic bacteria in rivers and their fate downstream. Int J Microbiol. doi:10.1155/2011/798292.

  • Adefisoye, M. A., & Okoh, A. I. (2016). Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in eastern cape, South Africa. Microbiology, 5, 143–151.

    CAS  Google Scholar 

  • Alexander, J., Bollmann, A., Seitz, W., & Schwartz, T. (2015). Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci Total Environ, 512-513, 316–325.

    Article  CAS  Google Scholar 

  • Aminov, R. I. (2009). The role of antibiotics and antibiotic resistance in nature. Environmental Microbiology, 11, 2970–2988.

    Article  CAS  Google Scholar 

  • Ashbolt, N. J., Amézquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Larsson, D. G., McEwen, S. A., Ryan, J. J., Schönfeld, J., Silley, P., Snape, J. R., Van den Eede, C., & Topp, E. (2013). Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Persp, 121, 993–1001.

    Google Scholar 

  • Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496.

    CAS  Google Scholar 

  • Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: the environmental framework. Nature Reviews. Microbiology, 13, 310–317. doi:10.1038/nrmicro3439.

    Article  CAS  Google Scholar 

  • Berezin, E. N., & Solórzano, F. (2014). Gram-negative infections in pediatric and neonatal intensive care units of Latin America. Journal of Infection in Developing Countries, 8, 942–953.

    Article  Google Scholar 

  • Billing, E., & Luckhurst, E. R. (1957). A simplified method for the preparation of egg yolk media. Journal of Applied Microbiology. doi:10.1111/j.1365-2672.1957.tb04523.x.

  • Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., & Bartlett, J. (2009). Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48, 1–12. doi:10.1086/595011.

    Article  Google Scholar 

  • Clinical and Laboratory Standards Institute. (2007). Performance standards for antimicrobial susceptibility testing. Seventeenth informational supplement M100-S17 (ISBN 1-56238-625-5). Wayne, Pennsylvania: Clinical and Laboratory Standards Institute.

    Google Scholar 

  • Coutinho, F. H., Silveira, C. B., Pinto, L. H., Salloto, G. R., Cardoso, A. M., Martins, O. B., Vieira, R. P., & Clementino, M. M. (2014). Antibiotic resistance is widespread in urban aquatic environments of Rio de Janeiro, Brazil. Microbial Ecology, 68, 441–452.

    Article  CAS  Google Scholar 

  • Czekalski, N., Gascón Díez, E., & Bürgmann, H. (2014). Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. The ISME Journal, 8, 1381–1390.

    Article  CAS  Google Scholar 

  • Czekalski, N., Sigdel, R., Birtel, J., Matthews, B., & Bürgmann, H. (2015). Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environment, 81, 45–55.

    CAS  Google Scholar 

  • Dantas, G., Sommer, M. O., Oluwasegun, R. D., & Church, G. M. (2008). Bacteria subsisting on antibiotics. Science, 320, 100–103. doi:10.1126/science.1155157.

    Article  CAS  Google Scholar 

  • Davis, R., & Brown, P. D. (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. Journal of Medical Microbiology, 65, 261–271. doi:10.1099/jmm.0.000229.

    Article  CAS  Google Scholar 

  • Drudge, C. N., Elliott, A. V., Plach, J. M., Ejim, L. J., Wright, G. D., Droppo, I. G., & Warren, L. A. (2012). Diversity of integron- and culture-associated antibiotic resistance genes in freshwater floc. Applied and Environmental Microbiology, 78, 4367–4372.

    Article  CAS  Google Scholar 

  • Finley, R. L., Collignon, P., Larsson, D. G., McEwen, S. A., Li, X. Z., Gaze, W. H., Reid-Smith, R., Timinouni, M., Graham, D. W., & Topp, E. (2013). The scourge of antibiotic resistance: the important role of the environment. Clinical Infectious Diseases, 57, 704–710.

    Article  Google Scholar 

  • Ganguly, N. K., Arora, N. K., Chandy, S. J., Fairoze, M. N., Gill, J. P., Gupta, U., Hossain, S., Joglekar, S., Joshi, P. C., Kakkar, M., Kotwani, A., Rattan, A., Sudarshan, H., Thomas, K., Wattal, C., Easton, A., Laxminarayan, R., & Global Antibiotic Resistance Partnership (GARP) - India Working Group. (2011). Rationalizing antibiotic use to limit antibiotic resistance in India. The Indian Journal of Medical Research, 134, 281–294.

    Google Scholar 

  • Gootz, T. D. (2010). The global problem of antibiotic resistance. Critical Reviews in Immunology, 30, 79–93.

    Article  CAS  Google Scholar 

  • Grosso-Becerra, M. V., Santos-Medellín, C., González-Valdez, A., Méndez, J. L., Delgado, G., Morales-Espinosa, R., Servín-González, L., Alcaraz, L. D., & Soberón-Chávez, G. (2014). Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics, 28, 15–318. doi:10.1186/1471-2164-15-318.

    Google Scholar 

  • Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens, 2011, e1002158. doi:10.1371/journal.ppat.1002158.

    Article  Google Scholar 

  • Hennequin, C., & Forestier, C. (2009). oxyR, a LysR-type regulator involved in Klebsiella pneumoniae mucosal and abiotic colonization. Infection and Immunity, 77, 5449–5457.

    Article  CAS  Google Scholar 

  • Kaplan, J. E., Roselle, G., & Sepkowitz, K. (1998). Opportunistic infections in immunodeficient populations. Emerging Infectious Diseases, 4, 421–422.

    Article  CAS  Google Scholar 

  • Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 46, 165–170.

    CAS  Google Scholar 

  • Marti, E., Variatza, E., & Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22, 36–41.

    Article  CAS  Google Scholar 

  • Martínez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321, 365–367.

    Article  Google Scholar 

  • Martínez, J. L. (2014). Short-sighted evolution of bacterial opportunistic pathogens with an environmental origin. Frontiers in Microbiology. doi:10.3389/fmicb.2014.00239.

  • Martínez, J. L., & Baquero, F. (2002). Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity and antibiotic resistance. Clinical Microbiology Reviews, 15, 647–679.

    Article  Google Scholar 

  • Martins, V. V., Pitondo-Silva, A., Manço Lde, M., Falcão, J. P., Freitas Sdos, S., & da-Silveira, W.D., & Stehling, E.G. (2014). Pathogenic potential and genetic diversity of environmental and clinical isolates of Pseudomonas aeruginosa. APMIS, 122(2), 92–100. doi:10.1111/apm.12112.

  • Oberlé, K., Capdeville, M. J., Berthe, T., Budzinski, H., & Petit, F. (2012). Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: from medical center patients to a receiving environment. Environmental Science & Technology, 46, 1859–1868.

    Article  Google Scholar 

  • Okeke, I. N., & Edelman, R. (2001). Dissemination of antibiotic-resistant bacteria across geographic borders. Clinical Infectious Diseases, 33, 364–369.

    Article  CAS  Google Scholar 

  • Raghunath, D. (2008). Emerging antibiotic resistance in bacteria with special reference to India. Journal of Biosciences, 33, 593–603.

    Article  CAS  Google Scholar 

  • Rice, L. B. (2010). Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol, 31(Suppl 1), 7–10.

    Article  Google Scholar 

  • Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ, 447, 345–360.

    Article  CAS  Google Scholar 

  • da Silva, G. J., & Mendonça, N. (2012). Association between antimicrobial resistance and virulence in Escherichia coli. Virulence, 3(1), 18–28. doi:10.4161/viru.3.1.18382.

    Article  Google Scholar 

  • Sood, S., & Gupta, R. (2012). Antibiotic resistance pattern of community acquired uropathogens at a tertiary care hospital in Jaipur, Rajasthan. Indian Journal of Community Medicine, 37(1), 39–44.

    Article  Google Scholar 

  • Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., & Svabic-Vlahovic, M. (2000). A modified microtiter-plate test for quantification of Staphylococcal biofilm formation. Journal of Microbiological Methods, 40, 175–179.

    Article  CAS  Google Scholar 

  • Talukdar, P. K., Rahman, M., Rahman, M., Nabi, A., Islam, Z., Hoque, M. M., Endtz, H. P., & Islam, M. A. (2013). Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolates from household water supply in Dhaka, Bangladesh. PloS One, 8(4), e61090. doi:10.1371/journal.pone.0061090.

    Article  CAS  Google Scholar 

  • Taylor, N. G. H., Verner-Jeffreys, D. W., & Baker-Austin, C. (2011). Aquatic systems: maintaining, mixing and mobilising antimicrobial resistance? Trends in Ecology & Evolution, 26, 278–284.

    Article  Google Scholar 

  • Vlieghe, E., Bal, E. M., & Gould, I. M. (2010). Surveillance of antibiotic resistance in developing countries: needs, constraints and realities. In A. J. Sosa et al. (Eds.), Antimicrobial resistance in developing countries (pp. 463–475). Berlin: Springer.

    Chapter  Google Scholar 

  • WHO (World Health Organization), (2014). Antimicrobial resistance: global report on surveillance. Available online. http://www.who.int/drugresistance/documents/surveillancereport/en/. (accessed May 2015).

  • Wojnicz, D., & Jankowski, S. (2007). Effects of subinhibitory concentrations of amikacin and ciprofloxacin on the hydrophobicity and adherence to epithelial cells of uropathogenic Escherichia coli strains. International Journal of Antimicrobial Agents, 29, 700–704.

    Article  CAS  Google Scholar 

  • Xiong, W., Sun, Y., Ding, X., Wang, M., & Zeng, Z. (2015). Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms. Frontiers in Microbiology, 11, 6:194. doi:10.3389/fmicb.2015.00194.

    Google Scholar 

  • Zurfluh, K., Hächler, H., Nüesch-Inderbinen, M., & Stephan, R. (2013). Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland. Applied and Environmental Microbiology, 79, 3021–3026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by intramural funds from DAE to National Institute of Science Education and Research. SKS and RE are grateful to DAE for financial support in the form of fellowship. MM acknowledges financial support from DST INSPIRE in the form of fellowship. The study design was conceived and planned by HM and executed by SKS, RE, and MM. Authors SKS and RE have equal contribution. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harapriya Mohapatra.

Electronic supplementary material

ESM 1

(DOCX 1309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Ekka, R., Mishra, M. et al. Association study of multiple antibiotic resistance and virulence: a strategy to assess the extent of risk posed by bacterial population in aquatic environment. Environ Monit Assess 189, 320 (2017). https://doi.org/10.1007/s10661-017-6005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6005-4

Keywords

Navigation