Skip to main content

Advertisement

Log in

Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was to survey the response of the microbial community to crude oil and the diversity of alkane hydroxylase (alkB) genes in soil samples from the Qinghai-Tibet Plateau (QTP). The enrichment cultures and clone libraries were used. Finally, 53 isolates and 94 alkB sequences were obtained from 10 pristine soil samples after enrichment at 10 °C with crude oil as sole carbon source. The isolates fell into the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, with the dominance of Pseudomonas and Acinetobacter. The composition of degraders was different from polar habitats where Acinetobacter sp. is not a predominant responder of alkane degradative microbial communities. Phylogenetic analysis showed that the alkB genes from isolates and enrichment communities formed eight clusters and mainly related with alkB genes of Pseudomonas, Rhodococcus, and Acinetobacter. The alkB gene diversity in the QTP was lower than marine environments and polar soil samples. In particular, a total of 10 isolates exhibiting vigorous growth with crude oil could detect no crude oil degradation-related gene sequences, such as alkB, P450, almA, ndoB, and xylE genes. The Shannon-Wiener index of the alkB clone libraries from the QTP ranged from 1.00 to 2.24 which is similar with polar pristine soil samples but lower than that of contaminated soils. These results indicated that the Pseudomonas, Acinetobacter, and Rhodococcus genera are the candidate for in situ bioremediation, and the environment of QTP may be still relatively uncontaminated by crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Crisafi, F., Giuliano, L., Yakimov, M. M., Azzaro, M., & Denaro, R. (2016). Isolation and degradation potential of a cold-adapted oil/PAH-degrading marine bacterial consortium from Kongsfjorden (Arctic region). Rendiconti Lincei, 27(S1), 261–270. doi:10.1007/s12210-016-0550-6.

    Article  Google Scholar 

  • Deppe, U., Richnow, H.-H., Michaelis, W., & Antranikian, G. (2005). Degradation of crude oil by an arctic microbial consortium. Extremophiles, 9(6), 461–470. doi:10.1007/s00792-005-0463-2.

    Article  Google Scholar 

  • Ferrera-Rodriguez, O., Greer, C. W., Juck, D., Consaul, L. L., Martinez-Romero, E., & Whyte, L. G. (2013). Hydrocarbon-degrading potential of microbial communities from Arctic plants. Journal of Applied Microbiology, 114(1), 71–83. doi:10.1111/jam.12020.

    Article  CAS  Google Scholar 

  • Jin, H. J., Yu, Q. H., Wang, S. L., & Lü, L. Z. (2008). Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Regions Science and Technology, 53(3), 317–333. doi:10.1016/j.coldregions.2007.07.005.

    Article  Google Scholar 

  • Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. Mammalian Protein Metabolism, 3(21), 132.

    Google Scholar 

  • Jurelevicius, D., Alvarez, V. M., Peixoto, R., Rosado, A. S., & Seldin, L. (2013). The use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PloS One, 8(6), e66565. doi:10.1371/journal.pone.0066565.t001.

  • Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., et al. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International Journal of Systematic and Evolutionary Microbiology, 62(Pt 3), 716–721. doi:10.1099/ijs.0.038075-0.

    Article  CAS  Google Scholar 

  • Kloos, K., Munch, J. C., & Schloter, M. (2006). A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. Journal of Microbiological Methods, 66(3), 486–496. doi:10.1016/j.mimet.2006.01.014.

    Article  CAS  Google Scholar 

  • Kuhn, E., Bellicanta, G. S., & Pellizari, V. H. (2009). New alk genes detected in Antarctic marine sediments. Environmental Microbiology, 11(3), 669–673. doi:10.1111/j.1462-2920.2008.01843.x.

    Article  CAS  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, 125–175.

  • Li, H., Wang, X.-L., Mu, B.-Z., Gu, J.-D., Liu, Y.-D., Lin, K.-F., et al. (2013). Molecular detection, quantification and distribution of alkane-degrading bacteria in production water from low temperature oilfields. International Biodeterioration & Biodegradation, 76, 49–57. doi:10.1016/j.ibiod.2012.06.007.

    Article  CAS  Google Scholar 

  • Liu, C., Wang, W., Wu, Y., Zhou, Z., Lai, Q., & Shao, Z. (2011). Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environmental Microbiology, 13(5), 1168–1178. doi:10.1111/j.1462-2920.2010.02416.x.

    Article  CAS  Google Scholar 

  • Nie, Y., Chi, C. Q., Fang, H., Liang, J. L., Lu, S. L., Lai, G. L., et al. (2014). Diverse alkane hydroxylase genes in microorganisms and environments. Scientific Reports, 4, 4968. doi:10.1038/srep04968.

    CAS  Google Scholar 

  • Panicker, G., Mojib, N., Aislabie, J., & Bej, A. K. (2010). Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie Van Leeuwenhoek, 97(3), 275–287. doi:10.1007/s10482-009-9408-6.

    Article  CAS  Google Scholar 

  • Qin, Y., & Zheng, B. (2010). The Qinghai–Tibet Railway: a landmark project and its subsequent environmental challenges. Environment, Development and Sustainability, 12(5), 859–873. doi:10.1007/s10668-009-9228-x.

    Article  Google Scholar 

  • Rahman, K. S. M., Thahira-Rahman, J., Lakshmanaperumalsamy, P., & Banat, I. M. (2002). Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 85(3), 257–261.

    Article  CAS  Google Scholar 

  • Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental Microbiology, 11(10), 2477–2490. doi:10.1111/j.1462-2920.2009.01948.x.

    Article  CAS  Google Scholar 

  • Shanklin, J., Whittle, E., & Fox, B. G. (1994). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry, 33(43), 12787–12794.

    Article  CAS  Google Scholar 

  • Tai, X. S., Mao, W. L., Liu, G. X., Chen, T., Zhang, W., Wu, X. K., et al. (2013). High diversity of nitrogen-fixing bacteria in the upper reaches of the Heihe River, northwestern China. Biogeosciences, 10(8), 5589–5600. doi:10.5194/bg-10-5589-2013.

    Article  Google Scholar 

  • van Beilen, J. B., Wubbolts, M. G., & Witholt, B. (1994). Genetics of alkane oxidation byPseudomonas oleovorans. Biodegradation, 5(3–4), 161–174.

    Article  Google Scholar 

  • van Beilen, J. B., Panke, S., Lucchini, S., Franchini, A. G., Röthlisberger, M., & Witholt, B. (2001). Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology, 147(6), 1621–1630.

    Article  Google Scholar 

  • Vázquez, S., Nogales, B., Ruberto, L., Mestre, C., Christie-Oleza, J., Ferrero, M., et al. (2013). Characterization of bacterial consortia from diesel-contaminated Antarctic soils: towards the design of tailored formulas for bioaugmentation. International Biodeterioration & Biodegradation, 77, 22–30. doi:10.1016/j.ibiod.2012.11.002.

    Article  Google Scholar 

  • Viggor, S., Juhanson, J., Joesaar, M., Mitt, M., Truu, J., Vedler, E., et al. (2013). Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel. Microbiological Research, 168(7), 415–427. doi:10.1016/j.micres.2013.02.006.

    Article  CAS  Google Scholar 

  • Viggor, S., Joesaar, M., Vedler, E., Kiiker, R., Parnpuu, L., & Heinaru, A. (2015). Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water. Marine Pollution Bulletin, 101(2), 507–516. doi:10.1016/j.marpolbul.2015.10.064.

    Article  CAS  Google Scholar 

  • Wang, W., & Shao, Z. (2012). Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiology Ecology, 80(3), 523–533. doi:10.1111/j.1574-6941.2012.01322.x.

    Article  CAS  Google Scholar 

  • Wang, B., Lai, Q., Cui, Z., Tan, T., & Shao, Z. (2008). A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environmental Microbiology, 10(8), 1948–1963. doi:10.1111/j.1462-2920.2008.01611.x.

    Article  CAS  Google Scholar 

  • Wang, L., Wang, W., Lai, Q., & Shao, Z. (2010a). Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environmental Microbiology, 12(5), 1230–1242. doi:10.1111/j.1462-2920.2010.02165.x.

    Article  CAS  Google Scholar 

  • Wang, W., Wang, L., & Shao, Z. (2010b). Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. Microbial Ecology, 60(2), 429–439. doi:10.1007/s00248-010-9724-4.

    Article  Google Scholar 

  • Wasmund, K., Burns, K. A., Kurtboke, D. I., & Bourne, D. G. (2009). Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia. Applied and Environmental Microbiology, 75(23), 7391–7398. doi:10.1128/AEM.01370-09.

    Article  CAS  Google Scholar 

  • Whyte, L. G., Schultz, A., van Beilen, J. B., Luz, A. P., Pellizari, V., Labbé, D., et al. (2002). Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiology Ecology, 41(2), 141–150.

    CAS  Google Scholar 

  • Yang, S. Z., Jin, H. J., Wei, Z., He, R. X., Ji, Y. J., Li, X. M., et al. (2009). Bioremediation of oil spills in cold environments a review. Pedosphere, 19(3), 371–381.

    Article  CAS  Google Scholar 

  • Yergeau, E., Bokhorst, S., Huiskes, A. H., Boschker, H. T., Aerts, R., & Kowalchuk, G. A. (2007). Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiology Ecology, 59(2), 436–451. doi:10.1111/j.1574-6941.2006.00200.x.

    Article  CAS  Google Scholar 

  • Yuan, Y., Si, G., Wang, J., Luo, T., & Zhang, G. (2014). Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiology Ecology, 87(1), 121–132. doi:10.1111/1574-6941.12197.

    Article  CAS  Google Scholar 

  • Zhang, G., Niu, F., Ma, X., Liu, W., Dong, M., Feng, H., et al. (2007). Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Canadian Journal of Microbiology, 53(8), 1000–1010. doi:10.1139/W07-031.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhang, G., Liu, G., Dong, Z., Chen, T., Zhang, M., et al. (2012). Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities. Journal of Environmental Sciences, 24(11), 2004–2011.

    Article  CAS  Google Scholar 

  • Zhang, X., Xu, S., Li, C., Zhao, L., Feng, H., Yue, G., et al. (2014). The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau. Research in Microbiology, 165(2), 128–139. doi:10.1016/j.resmic.2014.01.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the International Scientific and Technological Cooperation Projects of the Ministry of Science and Technology (2014DFA30330), the National Science Foundation of China (41271265), and the International Scientific and Technological Cooperation Projects of Gansu Province (1304wcga173).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangxiu Liu or Tuo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, H., Wang, Y., Chang, S. et al. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau. Environ Monit Assess 189, 116 (2017). https://doi.org/10.1007/s10661-017-5798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5798-5

Keywords

Navigation