Skip to main content
Log in

Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

PAH ring-hydroxylating dioxygenases (PAH-RHDα) gene, a useful biomarker for PAH-degrading bacteria, has been widely used to examine PAH-degrading bacterial community in different contaminated sites. However, the distribution of PAH-RHDα genes in oilfield soils and mangrove sediments and their relationship with environmental factors still remain largely unclear. In this study, gene-targeted metagenomics was first used to investigate the diversity of PAH-degrading bacterial communities in oilfield soils and mangrove sediments. The results showed that higher diversity of PAH-degrading bacteria in the studied samples was revealed by gene-targeted metagenomics than traditional clone library analysis. Pseudomonas, Burkholderia, Ralstonia, Polymorphum gilvum, Mycobacterium, Sciscionella marina, Rhodococcus, and potential new degraders were prevailed in the oilfield area. For mangrove sediments, novel PAH degraders and Mycobacterium were predominated. The spatial distribution of PAH-RHDα gene was dependent on geographical location and regulated by local environmental variables. PAH content played a key role in shaping PAH-degrading bacterial communities in the studied samples, which would enrich PAH-degrading bacterial population and decrease PAH-degrading bacterial diversity. This work brings a more comprehensive and some new insights into the distribution and biodegradation potential of PAH-degrading bacteria in soil and sediments ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20(7):4311–4326

    Article  CAS  Google Scholar 

  • Bengtsson G, Torneman N, De Lipthay JR, Sorensen SJ (2013) Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations. Microb Ecol 65(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Brett R, Baldwin CHN, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69(6):3350–3358

    Article  CAS  Google Scholar 

  • Bruijn FJD (2012) Handbook of molecular microbial ecology, I: metagenomics and complementary approaches. Wiley-Blackwell, New Jersey

    Google Scholar 

  • Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58(1–2):85–97

    Article  CAS  Google Scholar 

  • Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAHs-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13(3):722–736

    Article  CAS  PubMed  Google Scholar 

  • Cebron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAHs-ring hydroxylating dioxygenase (PAHs-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73(2):148–159

    Article  CAS  PubMed  Google Scholar 

  • Chadhain SMN, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72(6):4078–4087

    Article  CAS  Google Scholar 

  • Chen CF, Chen CW, Dong CD, Kao CM (2013) Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. Sci Total Environ 463-464(5):1174–1181

    Article  CAS  PubMed  Google Scholar 

  • DeBruyn JM, Chewning CS, Sayler GS (2007) Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ Sci Technol 41(15):5426–5432

    Article  CAS  PubMed  Google Scholar 

  • Ding GC, Heuer H, Zuhlke S, Spiteller M, Pronk GJ, Heister K, Kogel-Knabner I, Smalla K (2010) Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol 76(14):4765–4771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinform 27(16):2194

    Article  CAS  Google Scholar 

  • Fakruddin M, Mazumdar RM, Chowdhury A, Hossain MN, Mahajan S, Islam S (2013) Pyrosequencing: a next generation sequencing technology. World Appl Sci J 24(12):1558–1571

    CAS  Google Scholar 

  • Flocco CG, Gomes N, Mac Cormack W, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 11(3):700–714

    Article  CAS  PubMed  Google Scholar 

  • Gallego S, Vila J, Tauler M, Maria Nieto J, Breugelmans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25(4):543–556

    Article  CAS  PubMed  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7(386):1369

    PubMed  PubMed Central  Google Scholar 

  • Gillespie IM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31(6):329–332

    Article  CAS  PubMed  Google Scholar 

  • Gomes NC, Borges LR, Paranhos R, Pinto FN, Krogerrecklenfort E, Mendonca-Hagler LC, Smalla K (2007) Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl Environ Microbiol 73(22):7392–7399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong M, Ning Y, Han M, Zhao C, Tian J, Li L, Xiao H, Liu G (2017) A comparison of next-generation sequencing with clone sequencing in the diet analysis of Asian great bustard. Conserv Genet Resour 1–3

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(3–4):237–264

    Article  Google Scholar 

  • Guo C, Ke L, Dang Z, Tam NF (2011) Temporal changes in Sphingomonas and Mycobacterium populations in mangrove sediments contaminated with different concentrations of polycyclic aromatic hydrocarbons (PAHs). Mar Pollut Bull 62(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Han X-M, Liu Y-R, Zheng Y-M, Zhang X-X, He J-Z (2014) Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area. Environ Sci Pollut Res 21(16):9754–9763

    Article  CAS  Google Scholar 

  • Huang J (2013) Apllication of next-generation sequencing and bioinformatics approaches for elucidating microbial diversity and for bioprospecing in Antarctic freshwater lake ecosystems. Dissertation, The University of Alabama at Birmingham

  • Isaac P, Sánchez LA, Bourguignon N, Cabral ME, Ferrero MA (2013) Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int Biodeterior Biodegrad 82(4):207–214

    Article  CAS  Google Scholar 

  • Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, Tiedje JM (2010) Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J 4(2):279–285

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, de Lipthay JR, Sorensen SJ, Ekelund F, Christensen P, Andersen O, Karlson U, Jacobsen CS (2006) Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil. Environ Microbiol 8(3):535–545

    Article  CAS  PubMed  Google Scholar 

  • Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13(10):2623–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanneau Y, Martin F, Krivobok S, Willison CJ (2011) Ring-hydroxylating dioxygenases involved in PAH biodegradation: structure, function, biodiversity. In: Koukkou A-I (ed) Microbial bioremediation of non-metals: current research. Caister Academic Press, Norfolk, pp 149–175

  • Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2012) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Appl Soil Ecol 55:1–9

    Article  Google Scholar 

  • Keshri J, Mishra A, Jha B (2013) Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics. Microbiol Res 168(3):165–173

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Cantarel B, Henrissat B, Gevers D, Birren BW, Huttenhower C, Ko G (2014) Gene-targeted metagenomic analysis of glucan-branching enzyme gene profiles among human and animal fecal microbiota. ISME J 8(3):493–503

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hou L, Liu M, Zheng Y, Li Y, Lin X (2015) Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai. Appl Microbiol Biotechnol 99(8):3639–3649

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Huang Y, Wang H (2019) pahE, a functional marker gene for polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 85:e02399-18. https://doi.org/10.1128/AEM.02399-18

  • Liang Y, Nostrand JDV, Ye D, He Z, Wu L, Zhang X, Li G, Zhou J (2011) Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 5(3):403

    Article  PubMed  Google Scholar 

  • Lloyd-Jones G, Laurie AD, Hunter DW, Fraser R (1999) Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29(1):69–79

    Article  CAS  Google Scholar 

  • Lozada M, Mercadal JPR, Guerrero LD, Di Marzio WD, Ferrero MA, Dionisi HM (2008) Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC Microbiol 8:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu RK (2000) Soil agricultural chemical analysis method. China Agricultural Science and Technology Press, Beijing, pp 1–315

    Google Scholar 

  • Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A (2014) Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J 9(5):1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11(1–2):121–127

    Article  Google Scholar 

  • Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y (2013) Diversity and catalytic potential of PAHs-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 97(11):5125–5135

    Article  CAS  PubMed  Google Scholar 

  • Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meynet P, Hale SE, Davenport RJ, Cornelissen G, Breedveld GD, Werner D (2012) Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ Sci Technol 46(9):5057–5066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O (2015) Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res 22(6):4725–4735

    Article  CAS  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, OHara B (2007) The vegan package-Community ecology package R Package Version 2.0–9

  • Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, Nowka B, Richter A, Spieck E, Lebedeva E (2014) NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-xidizing Nitrospira. Environ Microbiol 16(10):3055–3071

    Article  CAS  PubMed  Google Scholar 

  • Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng Y, Wang G, Hao C, Xie Q, Zhang Q (2016) Microbial community structures in petroleum contaminated soils at an oilfield, Hebei, China. CLEAN-Soil, Air, Water 44(7):829–839

    Article  CAS  Google Scholar 

  • Stach JE, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4(3):169–182

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu Q, Deng Y, Yan Q, Shen L, Lin L, He Z, Wu L, Van Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide RB, Brown JH, Zhou J (2016) Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Mol Ecol 25:2937–2948

    Article  CAS  PubMed  Google Scholar 

  • Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Iii QJF, Fish JA, Tae KL, Sun Y, Tiedje JM, Cole JR (2013) Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. Mbio 4(5):00592–00513

    Article  CAS  Google Scholar 

  • Wu P, Wang YS, Sun FL, Wu ML, Peng YL (2014) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases in the sediments from the Pearl River estuary, China. Appl Microbiol Biotechnol 98(2):875–884

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Xia N, Lai Y, Dong J, Zhao P, Zhu B, Li Z, Ye W, Yuan Y, Huang J (2015) Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River. Chemosphere 128:236–244

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang J, Liao J, Xie S, Huang Y (2014) Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb Ecol 68(4):785–793

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang J, Liao J, Xie S, Huang Y (2015) Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 99(4):1935–1946

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhou N-Y (2017) Microbial remediation of aromatics-contaminated soil. Front Environ Sci Eng 11(2):1

    Article  CAS  Google Scholar 

  • Yeates C, Holmes AJ, Gillings MR (2010) Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ Microbiol 2(6):644–653

    Article  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Jixia Li and Houlin Jiang for their assistance in environmental samples collection.

Funding

This research was financially supported by National Natural Science Foundation of China (Grant No. 41573065 and Grant No. 41773082) and the Major Science and Technology Program for Water Pollution Control and Treatment in China (No. 2017ZX07202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Huang, Y., Wang, Y. et al. Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics. Appl Microbiol Biotechnol 103, 2427–2440 (2019). https://doi.org/10.1007/s00253-018-09613-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-09613-x

Keywords

Navigation