Skip to main content

Advertisement

Log in

The Qinghai–Tibet Railway: A landmark project and its subsequent environmental challenges

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The first part of this paper reviews the environment-friendly techniques implemented when the Qinghai–Tibet Railway was built. They include (1) state-of-the-art techniques to protect the permafrost in the subgrade of the railway embankment; (2) measures to avoid disturbing the species in the Qinghai–Tibet Plateau; (3) efforts to minimize the disturbance of the grassland and wetland; and (4) regulation to ensure the environmental disposal of the construction waste. The second part presents the subsequent environmental challenges which, after the operation of the railway, potentially risk the fragile ecological and environmental system in the plateau. The challenges come from the skyrocketing tourists, expansive natural resource exploitation, the long-term efficiency of permafrost-protected measure, and climatic warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An, C., Liu, J., & Li, J. (2003). Tibet China: Travel guide. Beijing, China: China Intercontinental Press.

    Google Scholar 

  • Baofa, Y., Huyin, H., Yili, Z., Le, Z., & Wanhong, W. (2006). Influence of the Qinghai-Tibetan railway and highway on the activities of wild animals. Acta Ecologica Sinica, 26(12), 3917–3923.

    Article  Google Scholar 

  • Brown, P. H., Magee, D., & Xu, Y. (2008). Socioeconomic vulnerability in China’s hydropower development. China Economic Review, 19(4), 614–627.

    Article  Google Scholar 

  • Cao, W., Sheng, Y., & Qi, J.-L. (2008). Assessment of the permafrost environment in the Muli mining area in Qinghai province based on catastrophe progression method. Meitan Xuebao/Journal of the China Coal Society, 33(8), 881–886.

    Google Scholar 

  • Chen, P., & Ji, W. (2008). Research on the test of vegetation recover in summit area of Tanggula mountain along Qinghai-Tibet railway. Tie Dao Gong Cheng Xue Bao/Journal of Railway Engineering Society, 112(1), 48–52.

    Google Scholar 

  • Chen, X., Zhang, S., Zhang, L., & Cheng, Y. (1996). A study on the physico-chemical speciation of heavy metals in waters of rivers, and lakes in the Changjiang river valley, China. Geo Journal, 40(1), 187–195.

    CAS  Google Scholar 

  • Cheng, G. (2005a). A roadbed cooling approach for the construction of Qinghai-Tibet railway. Cold Regions Science and Technology, 42(2), 169–176.

    Article  Google Scholar 

  • Cheng, G. D. (2005b). A roadbed cooling approach for the construction of Qinghai-Tibet railway. Cold Regions Science and Technology, 42(2), 169–176.

    Article  Google Scholar 

  • Cheng, G., Sun, Z., & Niu, F. (2008). Application of the roadbed cooling approach in Qinghai-Tibet railway engineering. Cold Regions Science and Technology, 53(3), 241–258.

    Article  Google Scholar 

  • Cheng, G., & Wu, T. (2007). Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112, F02S03. doi:10.1029/2006JF000631.

    Article  Google Scholar 

  • Cheng, G., Zhang, J., Sheng, Y., & Chen, J. (2004). Principle of thermal insulation for permafrost protection. Cold Regions Science and Technology, 40(1–2), 71–79.

    Article  Google Scholar 

  • Cobb, J. C., Wang, L., Woolery, E. W., Wang, Z., & Wu, Z. (2007). Rolling across the roof of the world. Geotimes, 2(2007), 1–2.

    Google Scholar 

  • Cui, X., & Graf, H.-F. (2009). Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94(1), 47–61.

    Article  Google Scholar 

  • Ding, Y., Yang, J., Liu, S., Chen, R., Wang, G., Shen, Y., et al. (2003). Eco-environment range in the source regions of the Yangtze and Yellow rivers. Journal of Geographical Sciences, 13(2), 172–180.

    Article  Google Scholar 

  • Dudley, J., Ginsberg, J., Plumptre, A., Hart, J., & Campos, L. (2002). Effects of war and civil strife on wildlife and wildlife habitats. Conservation Biology, 16(2), 319–329.

    Article  Google Scholar 

  • Foster, M. L., & Humphrey, S. R. (1995). Use of highway underpasses by Florida panthers and other wildlife. Wildlife Society Bulletin, 23(1), 95–100.

    Google Scholar 

  • French, H. M. (1980). Terrain, land use and waste dirring fluid disposal problem, Arctic Canada. Arctic, 33(4), 794–806.

    Google Scholar 

  • Genxu, W., Shengnan, L., Hongchang, H., & Yuanshou, L. (2009). Water regime shifts in the active soil layer of the Qinghai-Tibet plateau permafrost region, under different levels of vegetation. Geoderma, 149(3–4), 280–289.

    Article  Google Scholar 

  • Goering, D. J., & Kumar, P. (1996). Winter-time convection in open-graded embankments. Cold Regions Science and Technology, 24(1), 57–74.

    Article  Google Scholar 

  • Grosbois, A. (2007). International viewpoint and news. Environmental Geology, 52(8), 1665–1666.

    Article  Google Scholar 

  • Guoyu, L., Ning, L., & Xiaojuan, Q. (2006). The temperature features for different ventilated-duct embankments with adjustable shutters in the Qinghai-Tibet railway. Cold Regions Science and Technology, 44(2), 99–110.

    Article  Google Scholar 

  • He, X., Zhong, X., & Chen, X. (2006). Analysis on landscape ecological risk of the Qinghai-Tibet Plateaus: A case study on Niyang river basin. Wuhan University Journal of Natural Sciences, 11(4), 977–983.

    Article  Google Scholar 

  • Hu, B., Song, P., Li, Y., & Li, W. (2007). Solubility prediction in the ternary systems NaCl-RbCl-H2O, KCl-CsCl-H2O and KBr-CsBr-H2O at 25°C using the ion-interaction model. Calphad, 31(4), 541–544.

    Article  CAS  Google Scholar 

  • Jiang, J., Lou, Z., Ng, S., Luobu, C., & Ji, D. (2009). The current municipal solid waste management situation in Tibet. Waste Management, 29(3), 1186–1191.

    Article  CAS  Google Scholar 

  • Jin, H. J., Cheng, G. D., & Zhu, Y. L. (2000). Chinese geocryology at the turn of the twentieth century. Permafrost and Periglacial Processes, 11(1), 23–33.

    Article  Google Scholar 

  • Jin, H., Wei, Z., Wang, S., Yu, Q., Lanzhi, L., Wu, Q., et al. (2008). Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China. Engineering Geology, 101(3–4), 96–109.

    Article  Google Scholar 

  • Jin, H., Zhao, L., Wang Shaoling, J. H., Shuxun, Li., Lin, Z., & Jin, R. (2006). Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway. Science in China Series D: Earth Sciences, 49(11), 1170–1183.

    Article  Google Scholar 

  • Kaczensky, P., Knauer, F., Krze, B., Jonozovic, M., Adamic, M., & Gossow, H. (2003). The impact of high speed, high volume traffic axes on brown bears in Slovenia. Biological Conservation, 111(2), 191–204.

    Article  Google Scholar 

  • Kondratyev, V. G. (1996), ‘An introduction to monitoring system of engineering-geocryology for railway under construction’, in Proceeding of 8th international conference on cold regions en, Fairbanks, AK, USA, 688–699.

  • Krzewinski, T. G., Wachholz, M. J., Miller, D., & Lotakis, G. (2006). ARRC Rail Alignment Improvements Birchwood, Alaska Railroad Design—Construction in Marginally Frozen Relic Ice and Soil (pp. 27–36). Orono, Maine: ASCE.

    Google Scholar 

  • Li, M. S. (2006). Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Science of the Total Environment, 357(1–3), 38–53.

    Article  CAS  Google Scholar 

  • Li, G., Li, N., & Kang, J. (2006). Preliminary study on cooling effect mechanisms of Qinghai-Tibet railway embankment with open crushed-stone side slope in permafrost regions. Cold Regions Science and Technology, 45(3), 193–201.

    Article  Google Scholar 

  • Li, X. Y., Ma, Y. J., Xu, H. Y., Wang, J. H., & Zhang, D. S. (2009). Impact of land use and land cover change on environmental degradation in lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land Degradation & Development, 20(1), 69–83.

    Article  Google Scholar 

  • Lieberthal, K. (1997). China’s governing system and its impact on environmental policy implementation. China Environment Series, 1, 3–8.

    Google Scholar 

  • Liu, J., & He, D. (2006). Research agenda for understanding transboundary ecosystem changes and eco-security in Southwestern China. Journal of Mountain Science, 3(1), 81–90.

    Article  Google Scholar 

  • Liu, L., Li, Y., & Kang, F. (2007). Preliminary Study on Eco-recovery Technology of Railway Construction in Plateau Region. Shui Tu Bao Shi Xue bao/Research of Soil and Water Conservation, 14(1), 330–332.

    Google Scholar 

  • Ma, W., Feng, G., Wu, Q., & Wu, J. (2008a). Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai-Tibet railway. Cold Regions Science and Technology, 53(3), 259–270.

    Article  Google Scholar 

  • Ma, W., Qi, J., & Wu, Q. (2008b). Analysis of the deformation of embankments on the Qinghai-Tibet railway. Journal of Geotechnical and Geoenvironmental Engineering, 134(11), 1645–1654.

    Article  Google Scholar 

  • Ma, X.-J., Zhang, J.-M., Chang, X.-X., Zheng, B., & Zhang, M.-Y. (2008c). Experimental research on strength of warm and ice-rich frozen clays. Yantu Lixue/Rock and Soil Mechanics, 29(9), 2498–2502.

    Google Scholar 

  • Manderson, A. (2006). ‘A systems based framework to examine the multi-contextural application of the sustainability concept’, environment. Development and Sustainability, 8(1), 85–97.

    Article  Google Scholar 

  • Mikhailov, G. P. (1971). Temperature regime of embankment consisting of coarse rock on permafrost. Transportation Construction, 12, 23–33. (In Russian).

    Google Scholar 

  • Niu, F., Cheng, G., Ni, W., & Jin, D. (2005). Engineering-related slope failure in permafrost regions of the Qinghai-Tibet plateau. Cold Regions Science and Technology, 42(3), 215–225.

    Article  Google Scholar 

  • Pan, W. D., Wang, Q. C., Yu, S. S., & Zhang, X. Y. (2003). Study on ground temperature change and characteristic response of engineering geology of permafrost along Qinghai-Tibet railway. Science in China Series E-Engineering & Materials Science, 46, 78–90.

    Article  Google Scholar 

  • Peng, C., Ouyang, H., Gao, Q., Jiang, Y., Zhang, F., Li, J., et al. (2007). Environment: Building a “Green” railway in China. Science, 316(5824), 546–547.

    Article  CAS  Google Scholar 

  • Qi, J., Sheng, Y., Zhang, J., & Wen, Z. (2007). Settlement of embankments in permafrost regions in the Qinghai-Tibet plateau. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 61(2), 49–55.

    Article  Google Scholar 

  • Qin, D. (2002). Environmental Change Evaluation of Western China. Beijing: Science Press. (In Chinese).

    Google Scholar 

  • Qin, Y. (2009). ‘Estimate the permafrost degradation at Muli Coalfield, Qinghai-Tibet Plateau’, in 14th Conference on Cold regions Engineering. Duluth, MN, USA: ASCE.

    Google Scholar 

  • Qin, Y., Zhang, J., & Zheng, B. (2007). Mechanism of the longitudinal crack formation and growth in the embankment of Qinghai-Tibet railway. Journal of Transportation Engineering and Information, 15(3), 74–77. (In Chinese).

    Google Scholar 

  • Qin, Y., Zhang, J., Zheng, B., & Ma, X. (2009). Experimental study for the compressible behavior of warm and ice-rich frozen soil under the embankment of Qinghai-Tibet railroad. Cold Regions Science and Technology, 57(2–3), 148–153.

    Article  Google Scholar 

  • Shao, J., Ni, J., Wei, C., & Xie, D. (2005). Land use change and its corresponding ecological responses: A review. Journal of Geographical Sciences, 15(3), 305–328.

    Article  Google Scholar 

  • Shen, W. S., Zhang, H., Zou, C. X., Cao, X. Z., & Tang, X. Y. (2004). Approaches to prediction of impact of Qinghai-Tibet railway construction on alpine ecosystems alongside and its recovery. Chinese Science Bulletin, 49(8), 834–841.

    Google Scholar 

  • Sheng, Y., Wen, Z., Ma, W., Liu, Y., Qi, J., & Wu, J. (2006). Long-term evaluations of insulated road in the Qinghai-Tibetan plateau. Cold Regions Science and Technology, 45(1), 23–30.

    Article  Google Scholar 

  • Sherwood, M. (1979). Specious speciation in the political history of the Alaskan brown bear. The Western Historical Quarterly, 10(1), 49–60.

    Article  Google Scholar 

  • Su, M. M., & Wall, G. (2009). The Qinghai-Tibet railway and Tibetan tourism: Travelers’ perspectives. Tourism Management, 30(5), 650–657.

    Article  Google Scholar 

  • Wall, G. (1996). Book Reviews : Polar Tourism: Tourism in the Artic and Antartic Regions. New York, USA: John Wiley and Sons.

    Google Scholar 

  • Wang, Y. (2004). Environmental degradation and environmental threats in China. Environmental Monitoring and Assessment, 90(1), 161–169.

    Article  Google Scholar 

  • Wang, S., Jin, H., Li, S., & Zhao, L. (2000). Permafrost degradation on the Qinghai-Tibet plateau and its environmental impacts. Permafrost and Periglacial Processes, 11(1), 43–53.

    Article  CAS  Google Scholar 

  • Wang, G., Wang, Y., Li, Y., & Cheng, H. (2007). Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. CATENA, 70(3), 506–514.

    Article  Google Scholar 

  • Wen, Z., Sheng, Y., Ma, W., & Qi, J. (2008). In situ experimental study on thermal protection effects of the insulation method on warm permafrost. Cold Regions Science and Technology, 53(3), 369–381.

    Article  Google Scholar 

  • Wu, Q., Lu, Z., Tingjun, Z., Ma, W., & Liu, Y. (2008). Analysis of cooling effect of crushed rock-based embankment of the Qinghai-Xizang railway. Cold Regions Science and Technology, 53(3), 271–282.

    Article  Google Scholar 

  • Xia, L., Yang, Q. S., Li, Z. C., Wu, Y. H., & Feng, Z. J. (2007). The effect of the Qinghai-Tibet railway on the migration of Tibetan antelope Pantholops hodgsonii in Hoh-xil national nature reserve, China. Oryx, 41(3), 352–357.

    Article  Google Scholar 

  • Xu, J., Haginoya, S., Masuda, K., & Suzuki, R. (2005). Heat and water balance estimates over the Tibetan plateau in 1997–1998. Journal of the Meteorological Society of Japan, 83(4), 577–593.

    Article  Google Scholar 

  • Xu, G., Wan, W., She, C., & Du, L. (2008). The relationship between ionospheric total electron content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet plateau obtained with a partial correlation method. Advances in Space Research, 42(1), 219–223.

    Article  Google Scholar 

  • Ya-ling, C., Sheng, Y., & Ma, W. (2008). Study on the effect of the thermal regime differences in roadbed slopes on their thawing features in permafrost regions of Qinghai-Tibetan plateau. Cold Regions Science and Technology, 53(3), 334–345.

    Article  Google Scholar 

  • Zhang, A. (2009). The development model in tourism resources of Qinghai-Tibet railway based on the pole-axis system theory. Economic Geography, 4(1), 25–30. (In Chinese with English Abstract).

    Google Scholar 

  • Zhang, T., Baker, T. H. W., Cheng, G.-D., & Wu, Q. (2008a). The Qinghai-Tibet railroad: A milestone project and its environmental impact. Cold Regions Science and Technology, 53(3), 229–240.

    Article  Google Scholar 

  • Zhang, M., Lai Y., & Dong Y. (2009). Numerical study on temperature characteristics of expressway embankment with crushed-rock revetment and ventilated ducts in warm permafrost regions. Cold Regions Science and Technology (In press) Accepted Manuscript.

  • Zhang, M., Lai, Y., Gao, Z., & Yu, W. (2006a). Influence of boundary conditions on the cooling effect of crushed-rock embankment in permafrost regions of Qinghai-Tibetan plateau. Cold Regions Science and Technology, 44(3), 225–239.

    Article  Google Scholar 

  • Zhang, M., Lai, Y., Niu, F., & He, S. (2006b). A numerical model of the coupled heat transfer for duct-ventilated embankment under wind action in cold regions and its application. Cold Regions Science and Technology, 45(2), 103–113.

    Article  Google Scholar 

  • Zhang, M., Lai, Y., Yu, W., & Huang, Z. (2007). Experimental study on influence of particle size on cooling effect of crushed-rock layer under closed and open tops. Cold Regions Science and Technology, 48(3), 232–238.

    Article  Google Scholar 

  • Zhang, F., Liu, A., Li, Y., Zhao, L., Wang, Q., & Du, M. (2008b). CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan plateau, China. Acta Ecologica Sinica, 28(2), 453–462.

    Article  CAS  Google Scholar 

  • Zhang, J., Ma X., & Zheng B. (2008b). Experimental study on mechanisms of subgrade deformation in permafrost regions along the Qinghai-Tibetan Railway. In 9th international conference on permafrost. University of Alaska at Fairbanks, USA.

  • Zhao, Y.-Z., Zou, X.-Y., Cheng, H., Jia, H.-K., Wu, Y.-Q., Wang, G.-Y., et al. (2006). Assessing the ecological security of the Tibetan plateau: Methodology and a case study for Lhaze county. Journal of Environmental Management, 80(2), 120–131.

    Article  Google Scholar 

  • Zhi, W., Yu, S., & Wei, M. (2007). Numerical evaluation of insulation application to embankment of Qinghai–Tibetan highway. Journal of Cold Regions Engineering, 21(2), 47–59.

    Article  Google Scholar 

  • Zhou, J., Yang, J., & Peng, G. (2008). Constructing a green railway on the Tibet plateau: Evaluating the effectiveness of mitigation measures. Transportation Research Part D: Transport and Environment, 13(6), 369–376.

    Article  Google Scholar 

  • Ziran, Z. (2002). The Chinese western development initiative: New opportunities for mineral investment. Resources Policy, 28(3–4), 117–131.

    Article  Google Scholar 

Download references

Acknowledgment

Sincere thanks to Dr. Wei Cao and Dr. Mingyi Zhang for their insightful ideas to improve the paper. The comments of two anonymous reviewers are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghong Qin.

Additional information

Readers should send their comments on this paper to BhaskarNath@aol.com within 3 months of publication of this issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Zheng, B. The Qinghai–Tibet Railway: A landmark project and its subsequent environmental challenges. Environ Dev Sustain 12, 859–873 (2010). https://doi.org/10.1007/s10668-009-9228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-009-9228-x

Keywords

Navigation