Skip to main content
Log in

Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad, S. (1995). Antioxidant mechanisms of enzymes and proteins. In S. Ahmad (Ed.), Oxidative stress and antioxidant defenses in biology (pp. 238–272). New York: Chapman and Hall.

    Chapter  Google Scholar 

  • Alia, Mohanty, P., & Matysik, J.(2001). Effect of proline on the production of singlet oxygen. Amino Acids. 21:195–200.

  • Arshad, M., Saleem, M., & Hussain, S. (2007). Perspectives of bacterial ACC deaminase in phytoremediation. Trends in Biotechnology, 25(8), 356–362.

    Article  CAS  Google Scholar 

  • Axelsen, K. B., & Palmgren, M. G. (2001). Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology, 126(2), 696–706.

    Article  CAS  Google Scholar 

  • Babu, A. G., Kim, J. D., & Oh, B. T. (2013). Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of hazardous materials, 250, 477–483.

    Article  Google Scholar 

  • Barceló, J. U. A. N., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of Plant Nutrition, 13(1), 1–37.

    Article  Google Scholar 

  • Bizily, S. P., Rugh, C. L., & Meagher, R. B. (2000). Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nature Biotechnology, 18(2), 213–217.

    Article  CAS  Google Scholar 

  • Boominathan, R., & Doran, P. M. (2002). Ni‐induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New phytologist, 156(2), 205–215.

  • Boominathan, R., & Doran, P. M. (2003). Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering, 83(2), 158–167.

    Article  CAS  Google Scholar 

  • Bourg, A. C. M., & Loch, J. G. (1995). Mobilization of heavy metals as affected by pH and redox conditions. In: Salomons W, Stigliani WM (Eds.) Biogeodynamics of pollutants in soils and sediment. Springer, Berlin, pp 87–102.

  • Burns, R. G., & Dick, R. P. (Eds.). (2002). Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York.

  • Callahan, D. L., Baker, A. J., Kolev, S. D., & Wedd, A. G. (2006). Metal ion ligands in hyperaccumulating plants. JBIC, Journal of Biological Inorganic Chemistry, 11(1), 2–12.

    Article  CAS  Google Scholar 

  • Caregnato, F. F., Koller, C. E., MacFarlane, G. R., & Moreira, J. C. F. (2008). The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 56, 1119–1127.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1983). Plant uptake of inorganic waste constituents. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge: Noyes Data Corporation.

    Google Scholar 

  • Chen, X. Z., Peng, J. B., Cohen, A., Nelson, H., Nelson, N., & Hediger, M. A. (1999). Yeast SMF1 mediates H+−coupled iron uptake with concomitant uncoupled cation currents. Journal of Biological Chemistry, 274(49), 35089–35094.

    Article  CAS  Google Scholar 

  • Cherian, S., & Oliveira, M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental science & technology, 39(24), 9377–9390.

    Article  CAS  Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475–486.

    Article  CAS  Google Scholar 

  • Clemens, S., Antosiewicz, D. M., Ward, J. M., Schachtman, D. P., & Schroeder, J. I. (1998). The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences, 95(20), 12043–12048.

    Article  CAS  Google Scholar 

  • Costa, G., & Morel, J. L. (1994). Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiology and Biochemistry, 32(4), 561–570.

    CAS  Google Scholar 

  • Cunningham, S. D., & Berti, W. R. (1993). Remediation of contaminated soils with green plants: an overview. In Vitro Cellular & Developmental Biology-Plant, 29(4), 207–212.

    Article  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715.

    CAS  Google Scholar 

  • Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Trends in Biotechnology, 13(9), 393–397.

    Article  CAS  Google Scholar 

  • Dalton, D. A. (1995). Antioxidant defenses of plants and fungi. In Oxidative stress and antioxidant defenses in biology (pp. 298–355). US: Springer.

    Book  Google Scholar 

  • Dietz, K. J., Baier, M., & Krämer, U. (1999). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In  M.N.V. Prasad and J. Hagemeyer (Eds.) Heavy metal stress in plants: From Molecules to Ecosystems, (pp. 73–97). Springer Berlin Heidelberg.

  • Eapen, S., & D’souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23(2), 97–114.

    Article  CAS  Google Scholar 

  • Eide, D. J. (1998). The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annual Review of Nutrition, 18(1), 441–469.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O., Verkleij, J. A. C., & Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41(3), 229–248.

    Article  CAS  Google Scholar 

  • Farago, M. E., Mahmood, I., & Clark, A. J. (1980). The amino acid content of Hybanthus floribundus, a nickel accumulating plant and the difficulty of detecting nickel amino acid complexes by chromatographic methods. Inorganic and Nuclear Chemistry Letters, 16(8), 481–484.

    Article  CAS  Google Scholar 

  • Fergusson, J. E. (1990). The heavy metals: chemistry, environmental impact and health effects (pp. 382–388). Oxford: Pergamon Press.

    Google Scholar 

  • Foyer, C., Rowell, J., & Walker, D. (1983). Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta, 157(3), 239–244.

    Article  CAS  Google Scholar 

  • Gaither, L. A., & Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. In Zinc Biochemistry, Physiology, and Homeostasis (pp. 65–84). Netherlands: Springer.

    Book  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77(3), 229–236.

    Article  CAS  Google Scholar 

  • Gaxiola, R. A., Fink, G. R., & Hirschi, K. D. (2002). Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiology, 129(3), 967–973.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18.

    Google Scholar 

  • Glass, D. J. (1999). Current market trends in phytoremediation. international. Journal of Phytoremediation, 1(1), 1–8.

    Article  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology advances, 28(3), 367–374.

    Article  CAS  Google Scholar 

  • Gratão, P. L., Prasad, M. N. V., Cardoso, P. F., Lea, P. J., & Azevedo, R. A. (2005). Phytoremediation: green technology for the clean up of toxic metals in the environment. Brazilian Journal of Plant Physiology, 17(1), 53–64.

    Article  Google Scholar 

  • Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M. L., & Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences, 95(12), 7220–7224.

    Article  CAS  Google Scholar 

  • Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1), 190–198.

    Article  CAS  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.

    Article  CAS  Google Scholar 

  • Hall, J. L., & Williams, L. E. (2003). Transition metal transporters in plants. Journal of experimental botany, 54(393), 2601–2613.

    Article  CAS  Google Scholar 

  • John, D. A., & Leventhal, J. S. (1995). Bioavailability of metals. Preliminary compilation of descriptive geoenvironmental mineral deposit models. In E. du Bray (Ed.) pp. 10–18. USGS, Denver.

  • Jozefczak, M., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. International journal of molecular sciences, 13(3), 3145–3175.

    Article  CAS  Google Scholar 

  • Kaul, S., Sharma, S. S., & Mehta, I. K. (2008). Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids, 34(2), 315–320.

    Article  CAS  Google Scholar 

  • Kavi Kishor, P. B., Zonglie, H., Miao, G. H., Hu, C. A., & Verma, D. P. S. (1995). Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108(4), 1387–1394.

  • Kinnersley, A. M. (1993). The role of phytochelates in plant growth and productivity. Plant Growth Regulation, 12(3), 207–218.

    Article  CAS  Google Scholar 

  • Kotrba, P., Najmanova, J., Macek, T., Ruml, T., & Mackova, M. (2009). Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnology Advances, 27(6), 799–810.

    Article  CAS  Google Scholar 

  • Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J., & Smith, J. A. C. (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635–638.

  • Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research, 2(5), 1–25.

    Google Scholar 

  • Lombi, E., Tearall, K. L., Howarth, J. R., Zhao, F. J., Hawkesford, M. J., & McGrath, S. P. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 128(4), 1359–1367.

    Article  CAS  Google Scholar 

  • Ma, J. F., Hiradate, S., & Matsumoto, H. (1998). High aluminum resistance in buckwheat II. Oxalic acid detoxifies aluminum internally. Plant Physiology, 117(3), 753–759.

  • Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29(2), 248–258.

    Article  CAS  Google Scholar 

  • Mari, S., Gendre, D., Pianelli, K., Ouerdane, L., Lobinski, R., Briat, J. F., Lebrun, M., & Czernic, P. (2006). Root-to-shoot long-distance circulation of nicotianamine and nicotianamine–nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany,57(15), 4111–4122.

  • Martínez, M., Bernal, P., Almela, C., Vélez, D., García-Agustín, P., Serrano, R., & Navarro-Aviñó, J. (2006). An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere, 64(3), 478–485.

    Article  Google Scholar 

  • Martinoia, E., Grill, E., Tommasini, R., Kreuz, K., & Amrhein, N. (1993). ATP-dependent glutathione S-conjugate’export’pump in the vacuolar membrane of plants. Nature, 363, 247–249.

    Article  Google Scholar 

  • Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, Ü., & Schulz, B. (2002). Multifunctionality of plant ABC transporters–more than just detoxifiers. Planta, 214(3), 345–355.

    Article  CAS  Google Scholar 

  • Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., & Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646–1667.

    Article  Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14(3), 277–282.

    Article  CAS  Google Scholar 

  • Memon, A. R., & Schröder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16(2), 162–175.

    Article  CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environmental Health Perspectives, 116(3), 278.

    Article  CAS  Google Scholar 

  • Mills, R. F., Krijger, G. C., Baccarini, P. J., Hall, J. L., & Williams, L. E. (2003). Functional expression of AtHMA4, a P1B‐type ATPase of the Zn/Co/Cd/Pb subclass. The Plant Journal, 35(2), 164–176.

    Article  CAS  Google Scholar 

  • Navari-Izzo, F., & Quartacci, M. F. (2001). Phytoremediation of metals: tolerance mechanisms against oxidative stress. Minerva Biotecnologica, 13(2), 73.

    Google Scholar 

  • Olaniran, A. O., Balgobind, A., & Pillay, B. (2013). Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. International journal of molecular sciences, 14(5), 10197–10228.

    Article  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126.

    Article  CAS  Google Scholar 

  • Palmgren, M. G., & Harper, J. F. (1999). Pumping with plant P-type ATPases. Journal of Experimental Botany, 50(Special Issue), 883–893.

    Article  CAS  Google Scholar 

  • Pence, N. S., Larsen, P. B., Ebbs, S. D., Letham, D. L., Lasat, M. M., Garvin, D. F., Eide, D., & Kochian, L. V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, 97(9), 4956–4960.

    Article  CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Reviewof Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Prasad, M.N.V. (2004) Heavy metal stress in plants: In M.N.V. Prasad. (Eds.), From Biomolecules to Ecosystems. Springer-Verlag Heidelberg. 2nd Ed. pp. 462.

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29(4), 529–540.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–181.

    Article  CAS  Google Scholar 

  • Raskin, I., Kumar, P. N., Dushenkov, S., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5(3), 285–290.

    Article  CAS  Google Scholar 

  • Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8(2), 221–226.

    Article  CAS  Google Scholar 

  • Rea, P. A. (1999). MRP subfamily ABC transporters from plants and yeast. Journal of Experimental Botany, 50(Special Issue), 895–913.

  • Rea, P. A. (2007). Plant ATP-binding cassette transporters. Annual Review of Plant Biology, 58, 347–375.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. S., Thornton, I., Farago, M. E., & Ashmore, M. R. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10(2), 61–75.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643–668.

    Article  CAS  Google Scholar 

  • Sarma, H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4(2), 118–138.

    Article  CAS  Google Scholar 

  • Saxena, P., & Misra, N. (2010). Remediation of heavy metal contaminated tropical land. In Sherameti, I. and A. Varma (Eds.) Soil Heavy Metals Soil Biology (pp. 431–477). Springer Berlin Heidelberg.

  • Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal‐induced accumulation of free proline in a metal‐tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101(3), 477–482.

    Article  CAS  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711–726.

    Article  CAS  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14(1), 43–50.

    Article  CAS  Google Scholar 

  • Sharma, S. S., Kaul, S., Metwally, A., Goyal, K. C., Finkemeier, I., & Dietz, K. J. (2004). Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 166(5), 1287–1295.

    Article  CAS  Google Scholar 

  • Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057–1060.

    Article  CAS  Google Scholar 

  • Supek, F., Supekova, L. U. B. I. C. A., Nelson, H. A. N. N. A. H., & Nelson, N. A. T. H. A. N. (1997). Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function. Journal of Experimental Biology, 200(2), 321–330.

    CAS  Google Scholar 

  • Tester, M., & Leigh, R. A. (2001). Partitioning of nutrient transport processes in roots. Journal of Experimental Botany, 52(suppl 1), 445–457.

    Article  CAS  Google Scholar 

  • Thakur, S., & Sharma, S. S. (2015). Characterization of seed germination, seedling growth, and associated metabolic responses of Brassica juncea L. cultivars to elevated nickel concentrations. Protoplasma, 1–10.

  • Thomine, S., Wang, R., Ward, J. M., Crawford, N. M., & Schroeder, J. I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences, 97(9), 4991–4996.

  • Tong, Y. P., Kneer, R., & Zhu, Y. G. (2004). Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends in Plant Science, 9(1), 7–9.

    Article  CAS  Google Scholar 

  • Utsunamyia, T. (1980). Japanese Patent Application no. 55–72959.

  • Vacchina, V., Mari, S., Czernic, P., Marquès, L., Pianelli, K., Schaumlöffel, D., Lebrun, M., & Lobinski, R. (2003). Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Analytical Chemistry, 75(11), 2740–2745.

    Article  CAS  Google Scholar 

  • van der Zaal, B. J., Neuteboom, L. W., Pinas, J. E., Chardonnens, A. N., Schat, H., Verkleij, J. A., & Hooykaas, P. J. (1999). Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiology, 119(3), 1047–1056.

    Article  Google Scholar 

  • van Hoof, N. A., Hassinen, V. H., Hakvoort, H. W., Ballintijn, K. F., Schat, H., Verkleij, J. A., Ernst, W. H. O., Karenlampi, S. O., & Tervahauta, A. I. (2001). Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology, 126(4), 1519–1526.

    Article  Google Scholar 

  • Verkleij, J. A. C., & Schat, H. (1990). Mechanisms of metal tolerance in higher plants.In Shaw AJ (Ed.), Heavy metal tolerance in plants: Evolutionary aspects, (CRC Press, Boca Raton, FL), pp 179–193.

  • Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164, 645–655.

    Article  CAS  Google Scholar 

  • Vögeli-Lange, R., & Wagner, G. J. (1990). Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves implication of a transport function for cadmium-binding peptides. Plant Physiology, 92(4), 1086–1093.

    Article  Google Scholar 

  • Wang, Z., Zhang, Y., Huang, Z., & Huang, L. (2008). Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant and Soil, 310(1–2), 137–149.

    Article  CAS  Google Scholar 

  • Williams, L. E., Pittman, J. K., & Hall, J. L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465(1), 104–126.

    Article  CAS  Google Scholar 

  • Woolson, E. A. (1973). Arsenic phytotoxicity and uptake in six vegetable crops. Weed Science, 21, 524–527.

    CAS  Google Scholar 

  • Yang, X., Feng, Y., He, Z., & Stoffella, P. J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18(4), 339–353.

    Article  CAS  Google Scholar 

  • Zhao, H., & Eide, D. (1996). The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. Journal of Biological Chemistry, 271(38), 23203–23210.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhveer Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Singh, L., Wahid, Z.A. et al. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188, 206 (2016). https://doi.org/10.1007/s10661-016-5211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5211-9

Keywords

Navigation