Skip to main content
Log in

Biocontrol potential of volatile organic compounds (VOCs) produced by cotton endophytic rhizobacteria against Macrophomina phaseolina

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Correction to this article was published on 06 April 2022

This article has been updated

Abstract

Rhizospheric bacteria are soil bacteria inhabiting the near-root zone, with multifarious activities including the promotion of plant growth, nutrient mobilization, and biological control of pests and diseases. Rhizobacteria produce microbial volatile organic compounds (mVOCs) that can be utilized as biocontrol components against phytopathogenic fungi. Here, we analyzed the mVOCs produced from cotton rhizobacteria and their role in biological control of the fungus Macrophomina phaseolina. Twelve endospore-forming rhizobacterial strains were isolated from the cotton rhizosphere and screened for their biocontrol potential. Three rhizobacterial strains, Bacillus cereus CICR-D3, Bacillus aryabhattai CICR-D5 and Bacillus tequilensis CICR-H3 were evaluated for mVOCs using gas chromatography-mass spectrometry (GC-MS). Major antifungal mVOCs i.e. Benzene, 1, 3-diethyl- and Benzene, 1, 4-diethyl followed by naphthalene, m-ethylacetophenone and ethanone, 1-(4-ethylphenyl) were produced by these strains. The relative abundance of mVOCs released was highest from CICR-D3 followed by CICR-D5 and CICR-H3. Bi-compartmental Petri plate assay against M. phaseolina showed that the CICR-D3 strain was the most effective in inhibiting the mycelial growth (86.70 ± 0.50%), followed by the CICR-D5 (69.27 ± 0.17%) and CICR-H3 (62.84 ± 0.50%) strains. Furthermore, in vivo co-inoculation in a polyhouse revealed that severity of root rot caused by M. phaseolina was reduced by 72.74% in potted cotton plants inoculated with CICR-D3 strain, followed by strains CICR-D5 (69.04%) and CICR-H3 (66.60%). To the best of our knowledge, the specific volatiles are being reported for the first time from native cotton rhizobacterial strains, which provides new insight into cotton rhizobacteria and their antifungal mVOCs as an eco-compatible strategy for cotton root rot management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Abd-Elsalam, K. A. (2010). Genetical and biological control of cotton ashy stem caused by Macrophomina phaseolina in outdoor pot experiment. Saudi Journal of Biological Sciences, 17, 147–152.

    PubMed  PubMed Central  Google Scholar 

  • Adrees, H., Haider, M. S., Anjum, T., & Akram, W. (2019). Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Protection, 115, 75–83. https://doi.org/10.1016/j.cropro.2018.09.011

  • Alstrom, S. (2001). Characteristics of bacteria from oil seed rape in relation to their biocontrol of activity against Verticillium dahliae. Journal of Phytopathology, 149, 57–64.

    Google Scholar 

  • Anith, K. N., & Manomohandas, T. P. (2001). Combined application of Trichoderma harzianum and Alcaligenes sp. strain AMB 8 for controlling nursery rot disease of black pepper. Indian Phytopathology, 54, 335–339.

    Google Scholar 

  • Arrebola, E., Sivakumar, D., & Korsten, L. (2010). Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biological Control, 53, 122–128. https://doi.org/10.1016/j.biocontrol.2009.11.010

    Article  CAS  Google Scholar 

  • Asari, S., Matzén, S., Petersen, M. A., Bejai, S., & Meijer, J. (2016). Multiple effects of Bacillus amyloliquefaciens volatile compounds: Plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiology Ecology, 92(6), fiw070. https://doi.org/10.1093/femsec/fiw070

    Article  CAS  PubMed  Google Scholar 

  • Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32.

    CAS  PubMed  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, G. R., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    CAS  PubMed  Google Scholar 

  • Behere, G. T., Tajane, V. S., Aage, V. E., & Burgoni, E. B. (2003). Management of root rot of cotton, caused by Rhizoctonia solani through bioagents. World cotton research Conference-3, Cape Town-South Africa, 1424-1426.

  • Berg, G., Krechel, A., Ditz, M., Faupel, A., Ulrich, A., & Hallmann, J. (2005). Comparison of endophytic and ectophytic potato associated bacterial communities and their antagonistic activity against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215–229.

    CAS  PubMed  Google Scholar 

  • Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4, 343–350.

    CAS  PubMed  Google Scholar 

  • Brannen, P., & Kenney, D. (1997). Kodiak®-a successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology and Biotechnology, 19, 169–171. https://doi.org/10.1038/sj.jim.2900439

    Article  CAS  Google Scholar 

  • Bruton, B. D., Jeger, M. J., & Reuveni, R. (1987). Macrophomina phaseolina infection and vine decline in cantaloupe in relation to planting date, soil environment, and plant maturation. Phytopathology, 71, 259–263.

    Google Scholar 

  • Carr, J. G. (1983). Microbes I have known: A study of those associated with fermented products. Journal of Applied Bacteriology, 55, 383–402.

    CAS  PubMed  Google Scholar 

  • Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases. In (Ed.), Pesticides in the Modern World - Pesticides Use and Management. IntechOpen. https://doi.org/10.5772/17184

  • Chen, X. H., Koumaoutsi, A., Scholz, R., & Borriss, R. (2009). More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of Molecular Microbiology and Biotechnology, 16, 14–24.

    CAS  PubMed  Google Scholar 

  • Claus, D., & Berkeley, R. C. W. (1986). Genus Bacillus. In Bergey’s manual of systematic bacteriology (pp. 1105–1139). Williams and Wilkins.

    Google Scholar 

  • Cook, R. J., Tomashow, L. S., Weller, D. M., Fujimoto, D., Mazzola, M., Bangera, G., & Kim, D. S. (1995). Molecular mechanisms of defense by rhizobacteria against root disease. Proceedings of the National Academy of Sciences of the United States of America, 92, 4197–4201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo, R., Pedrini, N., Juárez, M., & Bello, G. D. (2008). Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiological Research, 163, 148–151.

    CAS  PubMed  Google Scholar 

  • Daisy, B. H., Strobel, G. A., Castillo, U., Ezra, D., Sears, J., Weaver, D. K., & Runyon, J. B. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148, 3737–3741.

    CAS  PubMed  Google Scholar 

  • Dhingra, O. D., & Sinclair, J. B. (1978). Biology and pathology of Macrophomina phaseolinaAustralasian Plant Pathology, 7, 25. https://doi.org/10.1007/BF03212337

  • Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodríguez-Padilla, C., González-Ochoa, G., & Tamez-Guerra, P. (2019). Bioactive products from plant-endophytic gram-positive bacteria. Frontiers in Microbiology, 10, 463. https://doi.org/10.3389/fmicb.2019.00463

    Article  PubMed  PubMed Central  Google Scholar 

  • Farag, M. A., Ryu, C. M., Sumner, L. W., & Pare, P. W. (2006). GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67(20), 2262–2268. https://doi.org/10.1016/j.phytochem.2006.07.021

    Article  CAS  PubMed  Google Scholar 

  • Fernando, D. W. G., Ramarathnama, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37, 955–964. https://doi.org/10.1016/j.soilbio.2004.10.021

    Article  CAS  Google Scholar 

  • Ferro, H. M., de Souza, R. M., Lelis, F. M. V., da Silva, J. C. P., & de Medeiro, S. F. H. V. (2020). Bacteria for cotton plant protection: Disease control, crop yield and fiber quality. Revista Caatinga, Mossoró, 33(1), 43–53. https://doi.org/10.1590/1983-21252020v33n105rc

    Article  Google Scholar 

  • Fiddaman, P. J., & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, 74, 119–126.

    CAS  PubMed  Google Scholar 

  • Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27–39. https://doi.org/10.1016/j.biocontrol.2016.11.007

    Article  Google Scholar 

  • Gaur, R. B., Sharma, R. N., & Singh, V. (2005). Manipulations in the mycoparasite application techniques against Rhizoctonia root rot of cotton. Indian Phytopathology, 58(4), 402–409.

    Google Scholar 

  • Ghaffar, A., & Erwin, D. C. (1969). Effect of soil water stress on root rot of cotton caused by Macrophomina phaseoli. Phytopathology, 59, 795–797.

    Google Scholar 

  • Giorgio, A., De Stradis, A., Lo Cantore, P., & Iacobellis, N. S. (2015). Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Frontiers in Microbiology, 6, 1056. https://doi.org/10.3389/fmicb.2015.01056

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.

    CAS  Google Scholar 

  • Gordon, R. E., Haynes, W. C., & Pang, C. H. N. (1973). The genus Bacillus. Agriculture handbook no. 427. US Government Printing Office.

    Google Scholar 

  • Gupta, A. M., Gopal, K. V. B., & Tilak, R. (2000). Mechanism of plant growth promotion by rhizobacteria. Indian Journal of Experimental Biology, 38, 856–862.

    CAS  PubMed  Google Scholar 

  • Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 10, 1–13.

    Google Scholar 

  • Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soil borne plant pathogens. Plant Cell, 8, 1855–1869.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashem, A., Tabassum, B., & Abd Allah, E. F. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiremani, N. S., Verma, P., Gawande, S. P., Sain, S. K., Nagrale, D. T., Salunkhe, V. N., Shah, V., Gokte-Narkhedkar, N., & Waghmare, V. N. (2020). Antagonistic potential and phylogeny of culturable endophytic fungi isolated from desi cotton (Gossypium arboreum L.). South African Journal of Botany. https://doi.org/10.1016/j.sajb.2020.03.008

  • Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C., & Mo, M. (2010). Characterization of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology, 126, 417–422. https://doi.org/10.1007/s10658-009-9550-z

    Article  CAS  Google Scholar 

  • Iqbal, M., Iqbal, M. Z., Khan, R. S. A., & Hayat, K. (2012). Comparison of obsolete and modern varieties in view to stagnancy in yield of cotton (G. hirsutum L.). Asian Journal of Plant Sciences, 4, 374–378.

    Google Scholar 

  • Jacobsen, B. J., Zidack, N. K., & Larson, B. J. (2004). The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. In symposium: The nature and application of biocontrol microbes: Bacillus spp. Phytopathology, 94(11), 1272–1275 Publication no. P-2004-0916-07O.

    CAS  PubMed  Google Scholar 

  • Joshi, R., & McSpadden Gardener, B. B. (2006). Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Biological Control, 96, 145–154.

    CAS  Google Scholar 

  • Joung, K. B., & Cote, J. C. (2002). Evaluation of ribosomal RNA gene restriction patterns for the classification of Bacillus species and related genera. Journal of Applied Microbiology, 92, 97–108.

    CAS  PubMed  Google Scholar 

  • Kai, M., Effmert, U., Berg, G., & Piechulla, B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology, 187, 351–360. https://doi.org/10.1007/s00203-006-0199-0

    Article  CAS  PubMed  Google Scholar 

  • Kaur, S., Dhillon, G. S., Brar, S. K., Vallad, G. E., Chand, R., & Chauhan, V. B. (2012). Emerging phytopathogen Macrophomina phaseolina: Biology, economic importance and current diagnostic trends. Critical Reviews in Microbiology, 38(2), 136–151. https://doi.org/10.3109/1040841X.2011.640977

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. N. (2007). Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathology, 5, 111–118.

    Google Scholar 

  • Khiyami, M. A., Omar, M. R., Abd-Elsalam, K. A., & El-Hady Aly, A. A. (2014). Bacillus-based biological control of cotton seedling disease complex. Journal of Plant Protection Research, 54(4), 341–348. https://doi.org/10.2478/jppr-2014-0051

    Article  Google Scholar 

  • Kumar, M. (2017). Studies on cotton root rot incited by Macrophomina phaseolina (Tassi) Goid. Thesis submitted in partial fulfillment of the requirements for the degree of m.Sc. (plant pathology), Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.

  • Li, C. H., Zhao, M. W., Tang, C. M., & Li, S. P. (2010). Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microbial Ecology, 59, 344–356. https://doi.org/10.1007/s00248-009-9570-4

  • Liu, W., Mu, W., Zhu, B., & Liu, F. (2008a). Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Current Research in Bacteriology, 1(1), 28–34. https://doi.org/10.3923/crb.2008.28.34

    Article  CAS  Google Scholar 

  • Liu, W., Mu, W., Zhu, B., Du, Y., & Liu, F. (2008b). Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil- borne plant pathogens. Agricultural Sciences in China, 7, 1104–1114. https://doi.org/10.1016/S1671-2927(08)60153-4

    Article  CAS  Google Scholar 

  • Lottmann, J., & Berg, G. (2001). Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non transgenic potato plants. Microbiological Research, 156, 75–82.

    CAS  PubMed  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    CAS  PubMed  Google Scholar 

  • Mackie, A. E., & Wheatley, R. E. (1999). Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biology and Biochemistry, 31, 375–385. https://doi.org/10.1016/S0038-0717(98)00140-0

    Article  CAS  Google Scholar 

  • Marimuthu, S., Ramamoorthy, V., Samiyappan, R., & Subbian, P. (2013). Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. Journal of Phytopathology, 161, 405–411. https://doi.org/10.1111/jph.12084

    Article  Google Scholar 

  • Marten, P., Smalla, K., & Berg, G. (2000). Genotypic and phenotypic differentiation of antifungal biocontrol strains belonging to Bacillus subtilis. Journal of Applied Microbiology, 89, 463–473.

    CAS  PubMed  Google Scholar 

  • Massawe, V. C., Hanif, A., Farzand, A., Mburu, D. K., Ochola, S. O., Wu, L., Tahir, H. A. S., Gu, Q., Wu, H., & Gao, X. (2018). Volatile compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum. Phytopathology, 1–13. https://doi.org/10.1094/PHYTO-04-18-0118-R

  • Mengistu, A., Smith, J. R., Ray, J. D., & Bellaloui, N. (2011). Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Disease, 95, 1159–1166.

    PubMed  Google Scholar 

  • Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037. https://doi.org/10.3390/microorganisms8071037

    Article  CAS  PubMed Central  Google Scholar 

  • Monga, D., & Raj, S. (1994). Cultural and pathogenic variations in the isolates of Rhizoctonia species causing root rot of cotton. Indian Phytopathology, 47(4), 403–408.

    Google Scholar 

  • Monga, D., Rathore, S. S., Mayee, C. D., & Sharma, T. R. (2004). Differentiation of isolates of cotton root rot pathogens Rhizoctonia solani and R. bataticola using pathogenicity and RAPD markers. Journal of Plant Biochemistry and Biotechnology, 13, 135–139.

    CAS  Google Scholar 

  • Omar, M. R., Abd-Elsalam, K. A., Aly, A. A., El-Samawaty, A. M. A., & Verreet, J. A. (2007). Diversity of Macrophomina phaseolina from cotton in Egypt: Analysis of pathogenicity, chlorate phenotypes, and molecular characterization. Journal of Plant Diseases and Protection, 114(5), 196–204.

    CAS  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    CAS  PubMed  Google Scholar 

  • Opelt, K., & Berg, G. (2004). Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient poor habitat of the Baltic Sea coast. Applied and Environmental Microbiology, 70, 6569–6579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Castro, R., Valencia-Cantero, E., & Lopez-Bucio, J. (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling & Behavior, 3, 263–265.

    Google Scholar 

  • Parry, J. M., Turnbull, P. C. B., & Gibson, J. R. (1983). A color atlas of Bacillus species. Wolfe Medical Publications Ltd..

    Google Scholar 

  • Perez-Garcia, A., Romero, D., & de Vincente, A. (2011). Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193.

    CAS  PubMed  Google Scholar 

  • Qiao, J.-Q., Wu, H.-J., Huo, R., Gao, X.-W., & Borriss, R. (2014). Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chemical Biological Technologies in Agriculture, 1, 12. https://doi.org/10.1186/s40538-014-0012-2

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., Vlami, M., & de Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, 81, 537–547.

    CAS  PubMed  Google Scholar 

  • Raza, W., Wang, J., Wu, Y., Ling, N., Wei, Z., Huang, Q., & Shen, Q. (2016). Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Applied Microbiology and Biotechnology, 100(17), 7639–7650.

    CAS  PubMed  Google Scholar 

  • Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7, 1785. https://doi.org/10.3389/fmicb.2016.01785

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothrock, C. S. (1987). Take-all of wheat as affected by tillage and wheat-soybean double cropping. Soil Biology and Biochemistry, 19, 307–311.

    Google Scholar 

  • Rothrock, C. S., Woodward, J. E., & Kemerait, R. C. (2015). Cotton diseases: Seed and seedling, bacterial blight, and vascular wilt. Crops Soils, 48, 32–41. https://doi.org/10.2134/cs2015-48-5-9

    Article  Google Scholar 

  • Rybakova, D., Cernava, T., Köberl, M., Liebminger, S., Etemadi, M., & Berg, G. (2016). Endophytes-assisted biocontrol: Novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil, 405, 125–140.

    CAS  Google Scholar 

  • Rybakova, D., Rackwetzlinger, U., Cernava, T., Schaefer, A., Schmuck, M., & Berg, G. (2017). Aerial warfare: A volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa. Frontiers in Plant Science, 8, 1294. https://doi.org/10.3389/fpls.2017.01294

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology and Biotechnological Equipment, 31(3), 446–459. https://doi.org/10.1080/13102818.2017.1286950

    Article  CAS  Google Scholar 

  • Sherzad, Z., & Canming, T. (2020). A new strain of Bacillus velezensis as a bioagent against Verticillium dahliae in cotton: Isolation and molecular identification. Egyptian Journal of Biological Pest Control, 30, 118. https://doi.org/10.1186/s41938-020-00308-y

    Article  Google Scholar 

  • Shrivastava, P., Kumar, R., & Yandigeri, M. S. (2017). In vitro biocontrol activity of halotolerant Streptomyces aureofaciens K20: A potent antagonist against Macrophomina phaseolina (Tassi) Goid. Saudi Journal of Biological Sciences, 24, 192–199. https://doi.org/10.1016/j.sjbs.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. S., & Wyllie, T. D. (1999). Charcoal rot. In G. L. Hartman, J. B. Sinclair, & J. C. Rupe (Eds.), Compendium of soybean disease (4th ed., pp. 29–31). American Phytopathological Society.

    Google Scholar 

  • Suriandraselvan, M., Salalrajan, F., & Aiyyanathan, K. E. A. (2006). Relationship between morphological variations and virulence in the isolates of Macrophomina phaseolina causing charcoal rot of sunflower. The Madras Agricultural Journal, 93(1–6), 63–67.

    Google Scholar 

  • Tesso, T. T., Claflin, L. E., & Tuinstra, M. R. (2005). Analyses of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Science, 45, 645–652.

    CAS  Google Scholar 

  • Turini, T. A., Natwick, E. T., Cook, C. G., & Stanghellini, M. E. (2000). Upland cotton varietal response to charcoal rot. Proceedings of the Beltwide cotton conference, National Cotton Council, Memphis TN, 1:147-148.

  • Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, M. J. (2003). Update on root exudation and rhizosphere biology. Plant Physiology, 132, 44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, M. G., Li, G. Q., Zhang, J. B., Jiang, D. H., & Huang, H. C. (2008). Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biological Control, 46, 552–559. https://doi.org/10.1016/j.biocontrol.2008.05.015

    Article  Google Scholar 

  • Wang, C., Wang, Z., Qiao, X., Li, Z., Li, F., Chen, M., Wang, Y., Huang, Y., & Cui, H. (2013). Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiology Letters, 341, 45–51. https://doi.org/10.1111/1574-6968.12088

    Article  CAS  PubMed  Google Scholar 

  • Watkins, G. M. (1981). Compendium of cotton diseases (p. 87). The American Phytopathological Society.

    Google Scholar 

  • Weisburg, W. G., Barnes, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Tomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.

    CAS  PubMed  Google Scholar 

  • Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek, 81, 357–364.

    CAS  PubMed  Google Scholar 

  • Whipps, J. M. (2001). Microbial interaction and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.

    CAS  PubMed  Google Scholar 

  • Wrather, J. A., Shannon, G., Balardin, R., Carregal, L., Escobar, R., Gupta, G. K., Ma, Z., Morel, W., Ploper, D., & Tenuta, A. (2010). Effect of diseases on soybean yield in the top eight producing countries in 2006. Online. Plant Health Progress, 11. https://doi.org/10.1094/PHP-2010-0125-01-RS

  • Xiaojian, L., Liu, L. I., Baidnun, O., & Derong, Z. (1988). Geographical distribution of sunflower diseases in China. In: Proc 12th International Sunflower Conference Novi Sad, Serbia, pp. 16–20.

  • Xu, Y., Hao, L., Wang, X., Zhang, K., & Li, G. (2015). Effect of volatile organic compounds from bacteria on nematodes. Chemistry and Biodiversity, 12, 1415–1421.

    CAS  PubMed  Google Scholar 

  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Raza, W., Shen, Q. R., & Huang, Q. W. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology, 78(16), 5942–5944.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, C. S., Mo, M. H., Gu, Y. Q., Zhou, J. P., & Zhang, K. Q. (2007). Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry, 39, 2371–2379. https://doi.org/10.1016/j.soilbio.2007.04.009

Download references

Acknowledgements

We all are thankful to Director, ICAR-CICR, Nagpur for extending support for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Nagrale.

Ethics declarations

Conflict of interest

The authors declare that they have no any conflict of interest.

Informed consent

All authors have agreed for submission of this manuscript.

Human and animal rights

The study in this article does not contain any human or animal participants performed by the authors.

Supplementary Information

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagrale, D.T., Gawande, S.P., Shah, V. et al. Biocontrol potential of volatile organic compounds (VOCs) produced by cotton endophytic rhizobacteria against Macrophomina phaseolina. Eur J Plant Pathol 163, 467–482 (2022). https://doi.org/10.1007/s10658-022-02490-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-022-02490-1

Keywords

Navigation