Skip to main content

Advertisement

Log in

Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is an important signal molecule involved in numerous plant responses to biotic and abiotic stresses. The effect of nitric oxide (NO) solution on pathogen infection and defence response of peach (Prunus persica (L.) Batsch) fruit against brown rot disease caused by Monilinia fructicola was investigated. The results showed that 15 μmol l−1 NO solution did not significantly inhibit spore germination, germ tube length or pathogenicity of M. fructicola, but significantly reduced disease incidence and lesion areas in the fruit. Although 100 μmol l−1 NO solution effectively inhibited the spore germination, germ tube elongation and pathogenicity of M. fructicola, the high concentration of NO solution caused damage to the fruit. Moreover, 15 μmol l−1 NO enhanced the activities of chitinase (CHI) and β-1,3-glucanase (GNS) in the fruit. RT-PCR analysis showed that the expression of four genes, CHI, GNS, pathogenesis-related protein 1 and 10 genes (PR-1, PR-10) all increased after NO treatment. Conversely, pretreatment with 100 μmol l−1 NO scavenger, 2-4-carboxyphenyl-4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), rendered the fruit relatively susceptible to pathogen infection and inhibited the defence response of the fruit. These results suggest that NO solution treatment can protect peach fruit from pathogen infection by inducing the activities of the defence enzymes and the expression of PR genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • A.-H.-Mackerness, S., John, C. F., Jordan, B., & Thomas, B. (2001). Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Letters, 489, 237–242.

    Article  CAS  PubMed  Google Scholar 

  • Boller, T., Gehri, A., Mauch, F., & Vögeli, U. (1983). Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 157, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Breda, C., Sallaud, C., El-Turk, J., Buffard, D., De Kozak, I., Esnault, R., et al. (1996). Defense reaction in Medicago sativa: a gene encoding a class 10 PR protein is expressed in vascular bundles. Molecular Plant - Microbe Interactions, 9, 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Cao, J., & Jiang, W. (2006). Induction of resistance in Yali pear (Pyrus bretschneideri Rehd.) fruit against postharvest diseases by acibenzolar-S-methyl sprays on trees during fruit growth. Scientia Horticulturae, 110, 181–186.

    Article  CAS  Google Scholar 

  • Chevalier, M., Parisi, L., Gueye, B., Campion, C., Simoneau, P., & Poupard, P. (2008). Specific activation of PR-10 pathogenesis-related genes in apple by an incompatible race of Venturia inaequalis. Biologia Plantarum, 52, 718–722.

    Article  CAS  Google Scholar 

  • Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., & Vad, K. (1993). Plant chitinases. The Plant Journal, 3, 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Delledonne, M. (2005). NO news is good news for plants. Current Opinion in Plant Biology, 8, 390–396.

    Article  CAS  PubMed  Google Scholar 

  • Fan, B., Shen, L., Liu, K., Zhao, D., Yu, M., & Sheng, J. (2008). Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans. Journal of the Science of Food and Agriculture, 88, 1238–1244.

    Article  CAS  Google Scholar 

  • Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., et al. (2007). The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 8, 677–700.

    Article  CAS  PubMed  Google Scholar 

  • Gasic, K., Hernandez, A., & Korban, S. S. (2004). RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter, 22, 437a–437g.

    Article  Google Scholar 

  • Graham, M. Y., Weidner, J., Wheeler, K., Pelow, M. J., & Graham, T. L. (2003). Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. Physiological and Molecular Plant Pathology, 63, 141–149.

    Article  CAS  Google Scholar 

  • Gu, H., Liu, A., Chen, W., Feng, S., & Shi, J. (2006). Development and control of postharvest diseases of loquat fruit. In X. M. Huang & J. Janick (Eds.) Paper presented at the II International Symposium on Loquat (pp. 750), Apr 01–06, Guangzhou, China.

  • Ippolito, A., El Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19, 265–272.

    Article  CAS  Google Scholar 

  • Jemric, T., Ivic, D., Fruk, G., Matijas, H. S., Cvjetkovic, B., Bupic, M., et al. (2011). Reduction of postharvest decay of peach and nectarine caused by Monilinia laxa using hot water dipping. Food and Bioprocess Technology, 4, 149–154.

    Article  Google Scholar 

  • Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5, 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Lai, T., Wang, Y., Li, B., Qin, G., & Tian, S. (2011). Defense responses of tomato fruit to exogenous nitric oxide during postharvest storage. Postharvest Biology and Technology, 62, 127–132.

    Article  CAS  Google Scholar 

  • Laird, J., Armengaud, P., Giuntini, P., Laval, V., & Milner, J. J. (2004). Inappropriate annotation of a key defence marker in Arabidopsis: will the real PR-1 please stand up? Planta, 219, 1089–1092.

    Article  CAS  PubMed  Google Scholar 

  • Landgraf, F. A., & Zehr, E. (1982). Inoculum sources for Monilinia fructicola in South Carolina peach orchards. Phytopathology, 72, 185–190.

    Article  Google Scholar 

  • Lazar, E. E., Wills, R. B., Ho, B. T., Harris, A. M., & Spohr, L. J. (2008). Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum. Letters in Applied Microbiology, 46, 688–692.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Bricker, T. M., Lefevre, M., Pinson, S. R., & Oard, J. H. (2006). Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctonia solani. Molecular Plant Pathology, 7, 405–416.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., Tian, S., Norelli, J., et al. (2012a). Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biology and Technology, 65, 61–68.

    Article  CAS  Google Scholar 

  • Liu, L., Wang, J., Qu, L., Li, S., Wu, R., & Zeng, K. (2012b). Effect of nitric oxide treatment on storage quality of Glorious oranges. Procedia Engineering, 37, 150–154.

    Article  CAS  Google Scholar 

  • Lo, S. C. C., Hipskind, J. D., & Nicholson, R. L. (1999). cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Molecular Plant - Microbe Interactions, 12, 479–489.

    Article  CAS  PubMed  Google Scholar 

  • Luza, J., Van Gorsel, R., Polito, V., & Kader, A. (1992). Chilling injury in peaches: a cytochemical and ultrastructural cell wall study. Journal of the American Society for Horticultural Science, 117, 114–118.

    Google Scholar 

  • Manjunatha, G., Raj, S. N., Shetty, N. P., & Shetty, H. S. (2008). Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pesticide Biochemistry and Physiology, 91, 1–11.

    Article  CAS  Google Scholar 

  • Mitsuhara, I., Iwai, T., Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., et al. (2008). Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Molecular Genetics & Genomics, 279, 415–427.

    Article  CAS  Google Scholar 

  • Mur, L. A. J., Carver, L. W., & Prats, E. (2006). NO way to live; the various roles of nitric oxide in plant-pathogen interactions. Journal of Experimental Botany, 57, 489–505.

    Article  CAS  PubMed  Google Scholar 

  • Park, C. J., Kim, K. J., Shin, R., Park, J. M., Shin, Y. C., & Paek, K. H. (2004). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. The Plant Journal, 37, 186–198.

    Article  CAS  PubMed  Google Scholar 

  • Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M., & Delledonne, M. (2003). Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 16, 1094–1105.

    Article  CAS  PubMed  Google Scholar 

  • Poupard, P., Strullu, D.-G., & Simoneau, P. (1998). Two members of the Bet v 1 gene family encoding birch pathogenesis-related proteins display different patterns of root expression and wound-inducibility. Functional Plant Biology, 25, 459–464.

    CAS  Google Scholar 

  • Poupard, P., Brunel, N., Leduc, N., Viémont, J. D., Strullu, D. G., & Simoneau, P. (2001). Expression of a Bet v 1 homologue gene encoding a PR 10 protein in birch roots: induction by auxin and localization of the transcripts by in situ hybridization. Functional Plant Biology, 28, 57–63.

    Article  CAS  Google Scholar 

  • Shi, J., Li, J., Zhu, S., & Zhou, J. (2011). Browning inhibition on fresh-cut chestnut kernel by exogenous nitric oxide. International Journal of Food Science and Technology, 46, 944–950.

    Article  CAS  Google Scholar 

  • Shi, J., Liu, A., Li, X., & Chen, W. (2013). Control of Phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putida MGP1. Journal of the Science of Food and Agriculture, 93, 568–574.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., Singh, Z., & Swinny, E. (2009). Postharvest nitric oxide fumigation delays fruit ripening and alleviates chilling injury during cold storage of Japanese plums ( Prunus salicina Lindell). Postharvest Biology and Technology, 53, 101–108.

    Article  CAS  Google Scholar 

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., et al. (1993). Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie, 75, 687–706.

    Article  CAS  PubMed  Google Scholar 

  • Theis, T., & Stahl, U. (2004). Antifungal proteins: targets, mechanisms and prospective applications. Cellular and Molecular Life Sciences, 61, 437–455.

    Article  CAS  PubMed  Google Scholar 

  • Tong, Z., Gao, Z., Wang, F., Zhou, J., & Zhang, Z. (2009). Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10, 71.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Loon, L. C., & van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.

    Article  Google Scholar 

  • van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Vidya, C. S. S., Manoharan, M., & Sita, G. L. (1999). Cloning and characterization of salicylic acid-induced, intracellular pathogenesis-related gene from tomato (Lycopersicon esculentum). Journal of Biosciences, 24, 287–293.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhang, Y., Gao, M., Jiao, C., & Wang, X. (2011). Identification and expression analysis of a pathogenresponsive PR-1 gene from Chinese wild Vitis quinquangularis. African Journal of Biotechnology, 10, 17062–17069.

    CAS  Google Scholar 

  • Wendehenne, D., Durner, J., & Klessig, D. F. (2004). Nitric oxide: a new player in plant signalling and defence responses. Current Opinion in Plant Biology, 7, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., Shen, L., Yu, M. M., Fan, B., Zhao, D. Y., Liu, L. Y., et al. (2011). Nitric oxide synthase as a postharvest response in pathogen resistance of tomato fruit. Postharvest Biology and Technology, 60, 38–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research work was supported by the Project of National Natural Science Foundation of China (31101371), Shandong Natural Science Foundation (ZR2010CQ039), the Research Fund for the Doctoral Program of Higher Education of China (20113702120001) and China Postdoctoral Science Foundation (201104605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingying Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, R., Zhu, S., Zhou, J. et al. Inhibition on brown rot disease and induction of defence response in harvested peach fruit by nitric oxide solution. Eur J Plant Pathol 139, 369–378 (2014). https://doi.org/10.1007/s10658-014-0393-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0393-x

Keywords

Navigation