Skip to main content
Log in

Histopathology of durable adult plant resistance to leaf rust in the Brazilian wheat variety Toropi

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Leaf rust, caused by the fungus Puccinia triticina is a major disease of wheat (Triticum aestivum) worldwide. This disease is prevalent in southern South America where the environmental conditions and high genetic variability of P. triticina favour epidemics. The primary means of controlling pathogenic P. triticina races has been through using wheat varieties containing race-specific resistance genes. The defence mechanisms involved in durable race non-specific resistance to P. triticina are probably distinct from those involved in non-durable race-specific resistance. We investigated the histological components of resistance to P. triticina present in three wheat genotypes: the race non-specific resistant Brazilian variety Toropi; the race-specific resistant line RL6010 Lr9; and the susceptible Brazilian variety BRS 194. Plants of these three genotypes were inoculated with P. triticina race MFP and tissue samples excised from flag leaves at various times after inoculation to assess the number of infective structures, frequency of cell death and the accumulation of autofluorescent cells and hydrogen peroxide. The genotypes showed different resistance mechanisms active at different times during the infection process. Our results for Toropi indicate that there was a reduction in the extent of formation of stomatal appressoria and all subsequent structures. During attempted penetration we also observed the production of autofluorescent compounds and late cell death, but not peroxide formation. This non-specific resistance to P. triticina involves both pre-haustorial and post-haustorial mechanisms which may be responsible for maintaining the low disease severity observed in this variety even under high inoculum pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anker, C. C., & Niks, R. E. (2001). Prehaustorial resistance to the wheat leaf rust fungus, Puccinia triticina in Triticum monococcum (s.s.). Euphytica, 117, 209–215.

    Article  Google Scholar 

  • Ayliffe, M., Jin, Y., Kang, Z., Persson, M., Steffenson, B., Wang, S., et al. (2011). Determining the basis of nonhost resistance in rice to cereal rusts. Euphytica, 179, 33–40.

    Article  Google Scholar 

  • Barcellos, A. L., Roelfs, A. P., & Moraes-Fernandes, M. I. B. (2000). Inheritance of adult plant leaf rust resistance in the Brazilian wheat cultivar Toropi. Plant Disease, 84, 90–93.

    Article  Google Scholar 

  • Bender, C. M., Pretorius, Z. A., Kloppers, F. J., & Spies, J. J. (2000). Histopathology of leaf rust infection and development in wheat genotypes containing Lr12 and Lr13. Journal of Phytopathology, 148, 65–76.

    Article  Google Scholar 

  • Bozkurt, T. O., Mcgrann, G. R. D., Maccormack, R., Boyd, L. A., & Akkaya, M. S. (2010). Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 11, 625–640.

    PubMed  CAS  Google Scholar 

  • Brammer, S. P., Worland, A., Barcellos, A. & Fernandes, M. I. B de M. (1998). Monosomic analysis of adult-plant resistance to lesf rust in the Brazilian wheat cultivar Toropi. (Paper presented at the 9th International wheat genetics symposium, Saskatoon).

  • Broers, L. H. M., & López-Atilano, R. M. (1996). Effect of quantitative resistance in wheat on the development of Puccinia striiformis during early stages of infection. Plant Disease, 80, 1265–1268.

    Article  Google Scholar 

  • Caldwell, R.M. (1968). Breeding for general and/or specific plant disease resistance. In: K.W. Finlay and K.W. Shepherd (Eds.). (Paper presented at the 3rd. International Wheat Genetic Symposium, Canberra).

  • Dakouri, A., McCallum, B. D., Walichnowski, A. Z., & Cloutier, S. (2010). Fine-mapping of the leaf rust Lr34 locus in Triticum aestivum (L.) and characterization of large germplasm collections support the ABC transporter as essential for gene function. Theoretical and Applied Genetics, 121, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Dyck, P. L. (1987). The association of a gene for leaf rust resistance with chromosome 7D suppressor of stem rust resistance in common wheat. Genome, 29, 467–469.

    Google Scholar 

  • Elahinia, S. A. (2008). Microscopic study on expression of Yr-18 gene related to adult plant resistance in a near-isogenic line of spring wheat (Triticum aestivum L.) to the Stripe Rust (Puccinia striiformis f. sp. tritici). Journal of Agriculture. Science and Technology, 10, 359–369.

    Google Scholar 

  • Espindula, L. F., Minella, E., & Delatorre, C. A. (2009). Low-P tolerance mechanisms and differential gene expression. Pesquisa Agropecuária Brasileira, 44, 1100–1105.

    Article  Google Scholar 

  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., et al. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion on Plant Biology, 9, 436–442.

    Article  Google Scholar 

  • German, S., Barcellos, A., Chaves, M., Kohli, M., Campos, B., & de Viedma, L. (2007). The situation of common wheat rusts in the Southern Cone of America and perspectives for control. Australian Journal of Agricultural Research, 58, 620–630.

    Article  Google Scholar 

  • Glombitza, S., Dubuis, P. H., Thulke, O., Welzl, G., Bovet, L., Götz, M., et al. (2004). Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Molecular Biology, 54, 817–835.

    Article  PubMed  CAS  Google Scholar 

  • Graichen, F. A. S., Martinelli, J. A., Wesp, C. L., Federizzi, L. C., & Chaves, M. S. (2011). Epidemiological and histological components of crown rust resistance in oat genotypes. European Journal of Plant Pathology, 131, 497–510.

    Article  Google Scholar 

  • Heath, M. C. (1981). Resistance of plants to rust infection. Phytopathology, 71, 971–974.

    Article  Google Scholar 

  • Huerta-Espino, J., Singh, R. P., German, S., Mccallum, B. D., Park, R. F., Chen, W. Q., et al. (2011). Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 179, 143–160.

    Article  Google Scholar 

  • Jagger, L. J., Newell, C., Berry, S. T., MacCormack, R., & Boyd, L. A. (2011). Histopathology provides a phenotype by which to characterize stripe rust resistance genes in wheat. Plant Pathology, 60, 640–648.

    Article  Google Scholar 

  • Jiang, X. L., & Kang, Z. S. (2010). Ultrastructural changes in the interaction between Puccinia striiformis and wheat cultivar with slow-rusting resistance. Agricultural Sciences in China, 9, 64–70.

    Google Scholar 

  • Johnson, R. (1984). A critical analysis of durable resistance. Annual Review of Phytopathology, 22, 309–330.

    Article  Google Scholar 

  • Kliebenstein, D. J., & Rowe, H. C. (2009). Anti-rust antitrust. Plant Science, 323, 1301–1302.

    CAS  Google Scholar 

  • Kohli, M. M. (1989). Taller sobre la fusariosis de la espiga en América del Sur. México: CIMMYT.

    Google Scholar 

  • Kohli, M. M., & Skovmand, B. (1997). Wheat varieties of South America. Names, parentage, pedigrees, and origin. Mexico: CIMMYT.

    Google Scholar 

  • Kowalska, A., & Niks, R. E. (1999). Histology of quantitative resistance in flax to the flax rust fungus (Melampsora lini). Canadian Journal of Plant Pathology, 21, 354–360.

    Article  Google Scholar 

  • Krattinger, S. G., Lagudah, E. S., Spielmeyer, W., Singh, R. P., Huerta-Espino, J., McFadden, H., et al. (2009). A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 323, 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., et al. (2005). Pre-and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310, 1180–1183.

    Article  PubMed  CAS  Google Scholar 

  • Long, D. L., & Kolmer, J. A. (1989). A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phythopathology, 79, 525–529.

    Article  Google Scholar 

  • Manickavelu, A., Kawaura, K., Oishi, K., Shin-I, T., Kohara, Y., Yahiaoui, N., et al. (2010). Comparative gene expression analysis of susceptible and resistant near-isogenic lines common wheat infected by Puccinia triticina. DNA Research, 17, 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Marone, D., Del Olmo, A. I., Laido, G., Sillero, J. C., Emeran, A. A., Russo, M. A., et al. (2009). Genetic analysis of durable resistance against leaf rustin durum wheat. Molecular Breeding, 24, 25–39.

    Article  CAS  Google Scholar 

  • Martínez, F., Niks, R. E., Singh, R. P., & Rubiales, D. (2001). Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust. Hereditas, 135, 111–114.

    Google Scholar 

  • McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: an atlas of resistance genes. East Melbourne: CSIRO.

    Book  Google Scholar 

  • Melichar, J. P. E., Berry, S., Newell, C., Maccormack, R., & Boyd, L. A. (2008). QTL identification and microphenotype characterization of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theoretical and Applied Genetics, 117, 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Moldenhauer, J., Pretorius, Z. A., Moerschbacher, B. M., Prins, R., & Van der Westhuizen, A. J. (2008). Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat. Molecular Plant Pathology, 9, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Montesanto, M., Brader, G., & Palva, E. T. (2003). Pathogen derived elicitors: searching for receptors in plants. Molecular Plant Pathology, 4, 73–79.

    Article  Google Scholar 

  • Niederhauser, J. S., Cervantes, J., & Servin, L. (1954). Late blight in Mexico and its implications. Phytopathology, 44, 406–408.

    Google Scholar 

  • Nirmala, J., Drader, T., Chen, X., Steffenson, B., & Kleinhofs, A. (2010). Stem rust spores elicit rapid RPG1 phosphorylation. Molecular Plant-Microbe Interactions, 23, 1635–1642.

    Article  PubMed  CAS  Google Scholar 

  • Orczyka, W., Dmochowska-Bogutaa, M., Czemborb, H. J., & Nadolska-Orczyka, A. (2010). Spatiotemporal patterns of oxidative burst and micronecrosis in resistance of wheat to brown rust infection. Plant Pathology, 59, 567–575.

    Article  Google Scholar 

  • Parry, A. L., & Carver, T. L. W. (1986). Relationship between colony development, resistance to penetration and autofluorescence in oats infected with powdery mildew. Transactions of the British Mycological Society, 3, 355–363.

    Article  Google Scholar 

  • Prats, E., Llamas, M. J., Jorrin, J., & Rubiales, D. (2007). Constitutive coumarin accumulation on sunflower leaf surface prevents rust germ tube growth and appressorium differentiation. Crop Science, 47, 1119–1124.

    Article  Google Scholar 

  • Rajaram S, & Campos, A. (1974). Epidemiology of wheat rusts in the Western Hemisphere. CIMMYT Research Bulletin No. 27, México, DF.

  • Raman, H., Zhang, K., Cakir, M., Appels, R., Garvin, D. F., Maron, L. G., et al. (2005). Molecular mapping and characterization of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome, 48, 781–791.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro do Vale, F. X., Parlevliet, J. E., & Zambolim, L. (2001). Concepts in plant disease resistance. Fitopatologia Brasileira, 26, 577–589.

    Google Scholar 

  • Rosa, S.B., Mccallum, B. & Brule-Babel, A. (2011). Quantitative resistance conferring durable leaf rust resistance in wheat cultivar Toropi. In: 2011 Technical Workshop—BGRI, 2011, Saint Paul, Minnesota, U.S.A. Poster abstracts. Saint Paul, Minnesota, U.S.A., 2011. p.184

  • Rojas-Molina, M. D. M., Rubiales, D., Prats, E., & Sillero, J. C. (2007). Effects of phenylpropanoid and energetic metabolism inhibition on faba bean resistance mechanisms to rust. Phytopathology, 97, 60–65.

    Article  CAS  Google Scholar 

  • Rubiales, D., & Niks, R. E. (1992). Low appressorium formation by rust fungi on Hordeum chilense lines. Phytopathology, 82, 1007–1012.

    Article  Google Scholar 

  • Rubiales, D., & Niks, R. E. (1995). Characterization of Lr34, a major gene conferring non-hypersensitive resistance to wheat leaf rust. Plant Disease, 79, 1208–1212.

    Article  Google Scholar 

  • Rubiales, D., & Niks, R. E. (2000). Combination of mechanisms of resistance to rust fungi as a strategy to increase durability. (In: C. Royo, M. M. Nachit, N. Di Fonzo & J. L. Araus (Eds.) Durum wheat improvement in Mediterraneous region: new challenges). Options Mediterraneennes, Series A, 40, 333–339.

    Google Scholar 

  • Ryan, P. R., Raman, H., Gupta, S., Horst, W. J., & Delhaize, E. (2009). A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology, 149, 340–351.

    Article  PubMed  CAS  Google Scholar 

  • Shetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121, 267–280.

    Article  CAS  Google Scholar 

  • Sillero, J. C., & Rubiales, D. (2002). Histological characterization of resistance to Uromyces viciae-fabae in faba bean. Phytopathology, 92, 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R. P. (1992). Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology, 82, 835–838.

    Article  Google Scholar 

  • Singh, R. P., Huerta-Espino, J., & Rajaram, S. (2000). Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathlogica Hungarica, 35, 133–139.

    CAS  Google Scholar 

  • Singh, R. P., & Huerta-Spino, J. (2001). Global monitoring of wheat rusts, and assessment of genetic diversity and vulnerability of popular cultivars. Research Highlights of the CIMMYT wheat program, 1999–2000. Mexico: CIMMYT.

    Google Scholar 

  • Singh, R. P., Huerta-Espino, J., Bhavani, S., Herrera-Foessel, S. A., Singh, D., Singh, P. K., et al. (2011). Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 179, 175–186.

    Article  Google Scholar 

  • Spielmeyer, W., McIntosh, R. A., Kolmer, J., & Lagudah, E. S. (2005). Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theoretical and Applied Genetics, 111, 731–735.

    Article  PubMed  CAS  Google Scholar 

  • Trethowan, R. M., Reynolds, M., Sayre, K., & Ortiz-Monasterio, I. (2005). Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Annals of Applied Biology, 146, 405–413.

    Article  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z. G., Wei, Y. D., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11, 1187–1194.

    Article  CAS  Google Scholar 

  • Vaz Patto, M. C., & Rubiales, D. (2009). Identification and characterization of partial resistance to rust in a germoplasm collection of Lathyrus sativus L. Plant Breeding, 128, 495–500.

    Article  Google Scholar 

  • Wang, X., Liu, W., Chen, X., Tang, C., Dong, Y., Ma, J., et al. (2010). Differential gene expression in incompatible interactions between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. Plant Biology, 10, 1–15.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Federal Agency for the Coordination of the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES) for a scholarship to the first author and the Brazilian National Council for Scientific Research and Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq) and the Foundation for Research Support of Rio Grande do Sul State (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, FAPERGS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antônio Martinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesp-Guterres, C., Martinelli, J.A., Graichen, F.A.S. et al. Histopathology of durable adult plant resistance to leaf rust in the Brazilian wheat variety Toropi. Eur J Plant Pathol 137, 181–196 (2013). https://doi.org/10.1007/s10658-013-0232-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0232-5

Keywords

Navigation