Skip to main content
Log in

Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant secondary metabolism significantly contributes to defensive measures against adverse abiotic and biotic cues. To investigate stress-induced, transcriptional alterations of underlying effector gene families, which encode enzymes acting consecutively in secondary metabolism and defense reactions, a DNA array (MetArray) harboring gene-specific probes was established. It comprised complete sets of genes encoding 109 secondary product glycosyltransferases and 63 glutathione-utilizing enzymes along with 62 cytochrome P450 monooxygenases and 26 ABC transporters. Their transcriptome was monitored in different organs of unstressed plants and in shoots in response to herbicides, UV-B radiation, endogenous stress hormones, and pathogen infection. A principal component analysis based on the transcription of these effector gene families defined distinct responses and crosstalk. Methyl jasmonate and ethylene treatments were separated from a group combining reactions towards two sulfonylurea herbicides, salicylate and an avirulent strain of Pseudomonas syringae pv. tomato. The responses to the herbicide bromoxynil and UV-B radiation were distinct from both groups. In addition, these analyses pinpointed individual effector genes indicating their role in these stress responses. A small group of genes was diagnostic in differentiating the response to two herbicide classes used. Interestingly, a subset of genes induced by P. syringae was not responsive to the applied stress hormones. Small groups of comprehensively induced effector genes indicate common defense strategies. Furthermore, homologous members within branches of these effector gene families displayed differential expression patterns either in both organs or during stress responses arguing for their non-redundant functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak, S., Tax, F.E., Feldmann, K.A., Galbraith, D.W. and Feyereisen, R. 2001. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101–111.

    PubMed  Google Scholar 

  • Batard, Y., Schalk, M., Pierrel, M.A., Zimmerlin, A., Durst, F. and Werck-Reichhart, D. 1997. Regulation of the cinnamate 4-hydroxylase (CYP73A1) in Jerusalem artichoke tubers in response to wounding and chemical treatments. Plant Physiol. 113: 951–959.

    PubMed  Google Scholar 

  • Bell-Lelong, D.A., Cusumano, J.C., Meyer, K. and Chapple, C. 1997. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol. 113: 729–738.

    PubMed  Google Scholar 

  • Bovet, L., Eggmann, T., Meylan-Bettex, M., Polier, J., Kammer, P., Marin, E., Feller, U. and Martinoia, E. 2003. Transcript levels of AtMRPs: induction of AtMRP3 after cadmium treatments. Plant Cell Environ. 26: 371–381.

    Google Scholar 

  • Caldwell, M.M. 1971. Solar ultraviolet radiation and the growth and development of higher plants. In: A.C. Giese (Ed.), Photophysiology, Vol. 6. Academic Press, New York, pp. 131–177.

    Google Scholar 

  • Chang, S., Puryear, J. and Cairney, J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113–116.

    Google Scholar 

  • Chapple, C. 1998. Molecular genetics analysis of plant cytochrome P450-dependent monooxygenases. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49: 311–343.

    Google Scholar 

  • Cheong, Y.H., Chang, H.-S., Gupta, R., Wang, X., Zhu, T. and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 661–677.

    PubMed  Google Scholar 

  • Coleman, J.O.D., Blake-Klaff, M.M.A. and Davies, T.G.E. 1997. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci. 2: 144–151.

    Google Scholar 

  • Davies, T.G.E. and Coleman, J.O.D. 2000. The Arabidopsis thaliana ATP-binding cassette proteins: an emerging superfamily. Plant Cell Environ. 23: 431–443.

    Google Scholar 

  • Dixon, D.P., Cole, D.J. and Edwards, R. 2000. Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch. Biochem. Biophys. 384: 407–412.

    PubMed  Google Scholar 

  • Dixon, D.P., Lapthorn, A. and Edwards, R. 2002. Plant glutathione transferases. Genome Biol. 3: 3004.1–3004.10.

    Google Scholar 

  • Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1: 316–323.

    PubMed  Google Scholar 

  • Edwards, R. and Dixon, D.P. 2000. The role of glutathione transferases in herbicide metabolism. In: A.H. Cobb and R.C. Kirkwood (Eds.), Herbicides and their Mechanism of Action. Sheffield Academic Press, Sheffield, pp. 33–71.

    Google Scholar 

  • Edwards, R., Dixon, D.P. and Walbot, V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5: 193–198.

    PubMed  Google Scholar 

  • Gaedeke, N., Klein, M., Kolukisaoglu, Ñ., Forestier, C., Müller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Müller-Röber, B. and Martinoia, E. 2001. The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J. 20: 1875–1887.

    PubMed  Google Scholar 

  • Gibeaut, D.M., Hulett, J., Cramer, G.R. and Seemann, J.R. 1997. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions. Plant Physiol. 115: 317–319.

    PubMed  Google Scholar 

  • Godiard, L., Sauviac, L., Dalbin, N., Liaubet, L., Callard, D., Czernic, P. and Marco, Y. 1998. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. FEBS Lett. 438: 245–249.

    PubMed  Google Scholar 

  • Gonneau, M., Mornet, R. and Laloue, M. 1998. A Nicotiana plumbaginifolia protein labeled with an azido cytokinin agonist is a glutathione S-transferase. Physiol. Plant 103: 114–124.

    Google Scholar 

  • Graham, S.E. and Peterson, J.A. 1999. How similar are P450s and what can their differences teach us. Arch. Biochem. Biophys. 369: 24–29.

    PubMed  Google Scholar 

  • Hauser, N.C., Vingron, M., Scheideler, M., Krems, B., Hellmuth, K., Entian, K.-D. and Hoheisel, J.D. 1998. Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14: 1209–1221.

    PubMed  Google Scholar 

  • Holter, N.S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J.R. and Fedoroff, N.V. 2000. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Natl. Acad. Sci. USA 97: 8409–8414.

    PubMed  Google Scholar 

  • Ibdah, M., Krins, A., Seidlitz, H.K., Heller, W., Strack, D. and Vogt, T. 2002. Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ. 25: 1145–1154.

    Google Scholar 

  • Jackson, R.G., Kowalczyk, M., Li, Y., Higgins, G., Ross, J., Sandberg, G. and Bowles, D.J. 2002. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: phenotypic characterisation of transgenic lines. Plant J. 32: 573–583.

    PubMed  Google Scholar 

  • Jackson, R.G., Lim, E.-K., Li, Y., Kowalczyk, M., Sandberg, G., Hoggett, J., Ashford, D.A. and Bowles, D.J. 2001. Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J. Biol. Chem. 276: 4350–4356.

    PubMed  Google Scholar 

  • Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand-Brynaert, J. and Boutry, M. 2001. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13: 1095–1107.

    PubMed  Google Scholar 

  • Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B. and Martin, C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 19: 6150–6161.

    PubMed  Google Scholar 

  • Jones, P. and Vogt, T. 2001. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213: 164–174.

    PubMed  Google Scholar 

  • Jones, P.R., Messner, B., Nakajima, J.-J., Schäffner, A.R. and Saito, K. 2003. UGT73C6 and UGT78D1-glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 278: 43910–43918.

    PubMed  Google Scholar 

  • Kahn, R. and Durst, F. 2000. Function and evolution of plant cytochrome P450. Recent Adv. Phytochem. 34: 151–189.

    Google Scholar 

  • Kampranis, S.C., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N. and Makris, A.M. 2000. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275: 29207–29216.

    PubMed  Google Scholar 

  • Kolukisaoglu, Ñ., Bovet, L., Klein, M., Eggmann, T., Geisler, M., Wanke, D., Martinoia, E. and Schulz, B. 2002. Family business: The multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta 216: 107–119.

    PubMed  Google Scholar 

  • Kreuz, K. and Martinoia, E. 1999. Herbicide metabolism in plants: Integrated pathways of detoxification. In: G.T. Brooks and T.R. Roberts (Eds.), The Proceedings of the 9th International Congress on Pesticide Chemistry: The Food-Environment Challenge. The Royal Society of Chemistry, London, pp. 279–287.

    Google Scholar 

  • Kunkel, B.N. and Brooks, D.M. 2002. Cross talk between signalling pathways in pathogen defense. Curr. Opin. Plant Biol. 5: 325–331.

    PubMed  Google Scholar 

  • Landgrebe, J., Wurst, W. and Welzl, G. 2002. Permutation-validated principal component analysis of microarray data. Genome Biol. 3: 0019.1–0019.11.

    Google Scholar 

  • Li, Y., Baldauf, S., Lim, E.-K. and Bowles, D.J. 2001. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J. Biol. Chem. 276, 4338–4343.

    PubMed  Google Scholar 

  • Lim, E., Doucet, C.J., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Ross, J. and Bowles, D.J. 2002. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 277: 586–592.

    PubMed  Google Scholar 

  • Lim, E.-K., Li, Y., Parr, A., Jackson, R., Ashford, D.A. and Bowles, D.J. 2001. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 276: 4344–4349.

    PubMed  Google Scholar 

  • Loutre, C., Dixon, D.P., Brazier, M., Slater, M., Cole, D.J. and Edwards, R. 2003. Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3,4-dichloroaniline. Plant J. 34: 485–493.

    PubMed  Google Scholar 

  • Loyall, L., Uchida, K., Braun, S., Furuya, M. and Frohnmeyer, H. 2000. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12: 1939–1950.

    PubMed  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L. and Dietrich, R.A. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genet. 26: 403–410.

    PubMed  Google Scholar 

  • Mansuy, D. 1998. The great diversity of reactions catalyzed by cytochrome P450. Comp. Biochem. Physiol. Part. C. 121: 5–14.

    Google Scholar 

  • Marrs, K.A. 1996. The functions and regulation of glutathione S-transferases in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47: 127–158.

    Google Scholar 

  • Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, Ñ., Müller-Röber, B. and Schulz, B. 2002. Multifunctionality of plant ABC transporters – more than just detoxifiers. Planta 214: 345–355.

    PubMed  Google Scholar 

  • Mazel, A. and Levine, A. 2002. Induction of glucosyltransferase transcription and activity during superoxide-dependent cell death in Arabidopsis plants. Plant Physiol. Biochem. 40: 133–140.

    Google Scholar 

  • Messner, B., Thulke, O. and Schäffner, A.R. 2003. Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217: 138–146.

    PubMed  Google Scholar 

  • Mikkelsen,M.D., Petersen, B.L., Glawischnig, E., Jensen, A.B., Andreasson, E. and Halkier, B.A. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 131: 298–308.

    PubMed  Google Scholar 

  • Milkowski, C., Baumert, A. and Strack, D. 2000. Identification of four Arabidopsis genes encoding hydroxycinnamate glucosyltransferases. FEBS Lett. 486: 183–184.

    PubMed  Google Scholar 

  • Mizutani, M., Ohta, D. and Sato, R. 1997. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol. 113: 755–763.

    PubMed  Google Scholar 

  • Mizutani, M., Ward, E. and Ohta, D. 1998. Cytochrome P450 superfamily in Arabidopsis thaliana: Isolation of cDNAs, differential expression, and RFLP mapping of multiple cytochromes P450. Plant Mol. Biol. 37: 39–52.

    PubMed  Google Scholar 

  • Mullineaux, P.M., Karpinski, S., Jimenez, A., Cleary, S.P., Robinson, C. and Creissen, G.P. 1998. Identification of cDNAS encoding plastid-targeted glutathione peroxidase. Plant J. 13: 375–379.

    PubMed  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H. and Foyer, C.H. 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 53: 1283–1304.

    PubMed  Google Scholar 

  • Page, R.D.M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.

    PubMed  Google Scholar 

  • Paquette, S. M., Møller, B.L. and Bak, S. 2003. On the origin of family 1 plant glycosyltransferases. Phytochemistry 62: 399–413.

    PubMed  Google Scholar 

  • Parmigiani, G., Garrett, E.S., Irizarry, R.A. and Zeger, S.L. 2003. The Analysis of Gene Expression Data: Methods and Software. Springer, New York.

    Google Scholar 

  • Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., Métraux, J.-P. and Broekaert, W.F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10: 2103–2113.

    PubMed  Google Scholar 

  • Pichersky, E. and Gang, D.R. 2000. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 5: 439–445.

    PubMed  Google Scholar 

  • Raychaudhuri, S., Stuart, J. and Altman, R. 2000. Principal component analysis to summarize microarray experiments: application to sporulation time series. In: Pacific Symposium on Biocomputing, Vol. 5, pp. 455–466.

    Google Scholar 

  • Reymond, P., Weber, H., Damond, M. and Farmer, E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12: 707–720.

    PubMed  Google Scholar 

  • Rodriguez Milla, M.A., Maurer, A., Rodriguez Huete, A. and Gustafson, J.P. 2003. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 36: 602–615.

    PubMed  Google Scholar 

  • Ross, J., Li, Y., Lim, E. and Bowles, D.J. 2001. Protein family review. Higher plant glycosyltransferases. Genome Biol. 2: 3004.1–3004.6.

    Google Scholar 

  • Sánchez-Fernández, R., Davies, T.G.E., Coleman, J.O.D. and Rea, P.A. 2001. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276: 30231–30244.

    PubMed  Google Scholar 

  • Sandermann, H. Jr. 1994. Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4: 225–241.

    PubMed  Google Scholar 

  • Sasabe, M., Toyoda, K., Shiraishi, T., Inagaki, Y., Ichinose, Y. 2002. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett. 518: 164–168.

    PubMed  Google Scholar 

  • Schalk, M., Pierrel, M.A., Zimmerlin, A., Batard, Y., Durst, F. and Werck-Reichhart, D. 1997. Xenobiotics: substrates and inhibitors of the plant P450s. Environ. Sci. Pol. Res. 4: 229–234.

    Google Scholar 

  • Schaller, B., Schneider, B. and Schütte, R.H. 1992. Metabolism of the herbicide bromoxynil in Hordeum vulgare and Stellaria media. Z. Naturforsch. 47c: 126–131.

    Google Scholar 

  • Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. and Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655–11660.

    PubMed  Google Scholar 

  • Schoch, G.A., Nikov, G.N., Alworth, W.L. and Werck-Reichhart, D. 2002. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Plant Physiol. 130: 1022–1031.

    PubMed  Google Scholar 

  • Schuler, M.A. and Werck-Reichhart, D. 2003. Functional genomics of P450s. Ann. Rev. Plant Phys. Plant Mol. Biol. 54: 629–667.

    Google Scholar 

  • Smart, C.C. and Fleming, A.J. 1996. Hormonal and environmental regulation of a plant PDR5-like ABC transporter. J. Biol. Chem. 271: 19351–19357.

    PubMed  Google Scholar 

  • Smith, A.P., Nourizadeh, S.D., Peer, W.A., Xu, J., Bandyopadhyay, A., Murphy, A.S. and Goldsbrough, P.B. 2003. Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J. 36: 433–442.

    PubMed  Google Scholar 

  • Sugimoto, M. and Sakamoto, W. 1997. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress. Genes Genet. Syst. 72: 311–316.

    PubMed  Google Scholar 

  • Surplus, S.L., Jordan, B.R., Murphy, A.M., Carr, J.P., Thomas, B. and A.-H.-Mackerness, S. 1998. Ultraviolet-Binduced responses in Arabidopsis thaliana: Role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ. 21: 685–694.

    Google Scholar 

  • Thara, V.K., Tang, X., Gu, Y.Q., Martin, G.B. and Zhou, J.M. 1999. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. Plant J. 20: 475–483.

    PubMed  Google Scholar 

  • Thimm, O., Essigmann, B., Kloska, S., Altmann, T. and Buckhout, T.J. 2001. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol. 127: 1030–1043.

    PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    PubMed  Google Scholar 

  • Thornalley, P.J. 1990. The glyoxalase system: New developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 269: 1–11.

    PubMed  Google Scholar 

  • Tommasini, R., Vogt, E., Schmid, J., Fromentau, M., Amrhein, N. and Martinoia, E. 1997. Differential expression of genes coding for ABC transporters after treatment of Arabidopsis thaliana with xenobiotics. FEBS Lett. 411: 206–210.

    PubMed  Google Scholar 

  • Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D. and Altman, R.B. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17: 520–525.

    PubMed  Google Scholar 

  • van den Brûle, S. and Smart, C.C. 2002. The plant PDR family of ABC transporters. Planta 216: 95–106.

    PubMed  Google Scholar 

  • van den Brûle, S., Müller, A., Fleming, A.J. and Smart, C.C. 2002. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J. 30: 649–662.

    PubMed  Google Scholar 

  • Wagner, U., Edwards, R., Dixon, D.P. and Mauch, F. 2002. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49: 515–532.

    PubMed  Google Scholar 

  • Warnecke, D.C., Baltrusch, M., Buck, F., Wolter, F.P. and Heinz, E. 1997. UDP-glucose:sterol glucosyltransferase: cloning and functional expression in Escherichia coli. Plant Mol. Biol. 35: 597–603.

    PubMed  Google Scholar 

  • Weig, A., Deswarte, C. and Chrispeels, M.J. 1997. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 114: 1347–1357.

    PubMed  Google Scholar 

  • Werck-Reichhart, D., Bak, S. and Paquette, S. 2002. Cytochromes P450. In: C.R. Somerville and E.M. Meyerowitz (Eds.), The Arabidopsis Book, American Society of Plant Biologists, Rockville, MD, http://www.aspb.org/publications/ arabidopsis/.

    Google Scholar 

  • Xu, W., Bak, S., Decker, A., Paquette, S.M., Feyereisen, R. and Galbraith, D.W. 2001. Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272: 61–74.

    PubMed  Google Scholar 

  • Xu, Y., Chang, P.F.L., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P.M. and Bressan, R.A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077–1085.

    PubMed  Google Scholar 

  • Zhou, N., Tootle, T.L. and Glazebrook, J. 1999. Arabidopsis PAD3, a gene required for camalexin biosynthesis encodes a putative cytochrome P450 monooxygenase. Plant Cell 11: 2419–2428.

    PubMed  Google Scholar 

  • Zimmerli, L., Jakab, G., Metraux, J.-P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97: 12920–12925.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glombitza, S., Dubuis, Ph., Thulke, O. et al. Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism. Plant Mol Biol 54, 817–835 (2004). https://doi.org/10.1007/s11103-004-0274-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-0274-3

Navigation