Skip to main content

Advertisement

Log in

A review of source tracking techniques for fine sediment within a catchment

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Excessive transport of fine sediment, and its associated pollutants, can cause detrimental impacts in aquatic environments. It is therefore important to perform accurate sediment source apportionment to identify hot spots of soil erosion. Various tracers have been adopted, often in combination, to identify sediment source type and its spatial origin; these include fallout radionuclides, geochemical tracers, mineral magnetic properties and bulk and compound-specific stable isotopes. In this review, the applicability of these techniques to particular settings and their advantages and limitations are reviewed. By synthesizing existing approaches, that make use of multiple tracers in combination with measured changes of channel geomorphological attributes, an integrated analysis of tracer profiles in deposited sediments in lakes and reservoirs can be made. Through a multi-scale approach for fine sediment tracking, temporal changes in soil erosion and sediment load can be reconstructed and the consequences of changing catchment practices evaluated. We recommend that long-term, as well as short-term, monitoring of riverine fine sediment and corresponding surface and subsurface sources at nested sites within a catchment are essential. Such monitoring will inform the development and validation of models for predicting dynamics of fine sediment transport as a function of hydro-climatic and geomorphological controls. We highlight that the need for monitoring is particularly important for hilly catchments with complex and changing land use. We recommend that research should be prioritized for sloping farmland-dominated catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alewell, C., Meusburger, K., Brodbeck, M., & Banninger, D. (2008). Methods to describe and predict soil erosion in mountain regions. Landscape and Urban Planning, 88, 46–53.

    Article  Google Scholar 

  • Balesdent, J., Wagner, G. H., & Mariotti, A. (1988). Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Science Society of America Journal, 52, 118–124.

    Article  CAS  Google Scholar 

  • Barthod, L. R. M., Liu, K., Lobb, D. A., Owens, P. N., Martínez-Carreras, N., Koiter, A. J., et al. (2015). Selecting color-based tracers and classifying sediment sources in the assessment of sediment dynamics using sediment source fingerprinting. Journal of Environmental Quality, 44, 1605–1616.

    Article  CAS  Google Scholar 

  • Bartley, R., Hawdon, A., Post, D. A., & Roth, C. H. (2007). A sediment budget for a grazed semi-arid catchment in the Burdekin basin, Australia. Geomorphology, 87, 302–321.

    Article  Google Scholar 

  • Bhattarai, R., & Dutta, D. (2007). Estimation of soil erosion and sediment yield using GIS at catchment scale. Water Resources Management, 21, 1635–1647.

    Article  Google Scholar 

  • Blake, W. H., Ficken, K. J., Taylor, P., Russell, M. A., & Walling, D. E. (2012). Tracing crop-specific sediment sources in agricultural catchments. Geomorphology, 139–140, 322–329.

    Article  Google Scholar 

  • Blessing, M., Jochmann, M. A., & Schmidt, T. C. (2007). Pitfalls in compound-specific isotope analysis of environmental samples. Analytical and Bioanalytical Chemistry. doi:10.1007/s00216-007-1588-1.

    Google Scholar 

  • Bo, T., Fenoglio, S., Malacarne, G., Pessino, M., & Sgariboldi, F. (2007). Effects of clogging on stream macroinvertebrates: An experimental approach. Limnologica—Ecology and Management of Inland Waters, 37, 186–192.

    Article  Google Scholar 

  • Böke, H., Akkurt, S., Özdemir, S., Göktürk, E. H., & Caner Saltik, E. N. (2004). Quantification of CaCO3–CaSO3·0.5H2O–CaSO4·2H2O mixtures by FTIR analysis and its ANN model. Materials Letters, 58, 723–726.

    Article  CAS  Google Scholar 

  • Boonyatumanond, R., Wattayakorn, G., Amano, A., Inouchi, Y., & Takada, H. (2007). Reconstruction of pollution history of organic contaminants in the upper Gulf of Thailand by using sediment cores: First report from Tropical Asia Core (TACO) project. Marine Pollution Bulletin, 54, 554–565.

    Article  CAS  Google Scholar 

  • Bravo-Espinoza, M., Mendoza, M. E., Medina-Orozco, L., Prat, C., Garcia-Oliva, F., & Lopez-Granados, E. (2009). Runoff, soil loss and nutrient depletion under traditional and alternative cropping systems in the Transmexican volcanic belt, Central Mexico. Land Degradation and Development, 20, 640–653.

    Article  Google Scholar 

  • Brown, A. G. (1985). The potential use of pollen in the identification of suspended sediment sources. Earth Surface Processes and Landforms, 10, 27–32.

    Article  Google Scholar 

  • Brown, R. B., Cutshall, N. H., & Kling, G. F. (1981a). Agricultural erosion indicated by Cs-137 redistribution 1. Levels and distribution of Cs-137 activity in soils. Soil Science Society of America Journal, 45, 1184–1190.

    Article  CAS  Google Scholar 

  • Brown, R. B., Kling, G. F., & Cutshall, N. H. (1981b). Agricultural erosion indicated by Cs-137 redistribution 2. Estimates of erosion rates. Soil Science Society of America Journal, 45, 1191–1197.

    Article  CAS  Google Scholar 

  • Busacca, A. J., Cook, C. A., & Mulla, D. J. (1993). Comparing landscape-scale estimation of soil erosion in the Palouse using Cs-137 and RUSLE. Journal of Soil and Water Conservation, 48, 361–367.

    Google Scholar 

  • Caitcheon, G. G., Olley, J. M., Pantus, F., Hancock, G., & Leslie, C. (2012). The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers. Geomorphology, 151–152, 188–195.

    Article  Google Scholar 

  • Carter, J., Owens, P. N., Walling, D. E., & Graham, J. L. L. (2003). Fingerprinting suspended sediment sources in a large urban river system. Science of the Total Environment, 314–316, 513–534.

    Article  CAS  Google Scholar 

  • Chikaraishi, Y., & Naraoka, H. (2003). Compound-specific δD-δ 13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 63, 361–371.

    Article  CAS  Google Scholar 

  • Chillrud, S. N., Hemming, S., Shuster, E. L., Simpson, H. J., Bopp, R. F., Ross, J. M., et al. (2003). Stable lead isotopes, contaminant metals and radionuclides in upper Hudson River sediment cores: Implications for improved time stratigraphy and transport processes. Chemical Geology, 199, 53–70.

    Article  CAS  Google Scholar 

  • Clement, B. M., Javier, J., Say, J. P., & Ross, M. S. (2011). The effects of wildfires on the magnetic properties of soils in the Everglades. Earth Surface Processes and Landforms, 36, 460–466.

    Article  Google Scholar 

  • Collins, A. L., & Walling, D. E. (2002). Selecting fingerprint properties for discriminating potential suspended sediment sources in river basins. Journal of Hydrology, 261, 218–244.

    Article  CAS  Google Scholar 

  • Collins, A. L., & Walling, D. E. (2007). Sources of fine sediment recovered from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology, 88, 120–138.

    Article  Google Scholar 

  • Collins, A. L., Walling, D. E., & Leeks, G. J. L. (1997a). Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. CATENA, 29, 1–27.

    Article  CAS  Google Scholar 

  • Collins, A. L., Walling, D. E., & Leeks, G. J. L. (1997b). Use of the geochemical record preserved in floodplain deposits to reconstruct recent changes in river basin sediment sources. Geomorphology, 19, 151–167.

    Article  Google Scholar 

  • Collins, A. L., Walling, D. E., & Leeks, G. J. L. (1998). Use of composite fingerprints to determine the provenance of the contemporary suspended sediment load transported by rivers. Earth Surface Processes and Landforms, 23, 31–52.

    Article  Google Scholar 

  • Collins, A. L., Walling, D. E., Stroud, R. W., Robson, M., & Peet, L. M. (2010a). Assessing damaged road verges as a suspended sediment source in the Hampshire Avon catchment, southern United Kingdom. Hydrological Processes, 24, 1106–1122.

    Article  Google Scholar 

  • Collins, A. L., Walling, D. E., Webb, L., & King, P. (2010b). Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information. Geoderma, 155, 249–261.

    Article  Google Scholar 

  • Collins, A. L., Zhang, Y., McChesney, D., Walling, D. E., Haley, S., & Smith, P. (2012). Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Science of the Total Environment, 414, 301–317.

    Article  CAS  Google Scholar 

  • D’Haen, K., Verstraeten, G., & Degryse, P. (2012). Fingerprinting historic fluvial sediment fluxes. Progress in Physical Geography, 36, 154–186.

    Article  Google Scholar 

  • Davis, C. M., & Fox, J. F. (2009). Sediment fingerprinting: Review of the method and future improvements for allocating nonpoint source pollution. Journal of Environmental Engineering, 135, 490–504.

    Article  CAS  Google Scholar 

  • Deasy, C., & Quinton, J. N. (2010). Use of rare earth oxides as tracers to identify sediment source areas for agricultural hillslopes. Solid Earth, 1, 111–118.

    Article  Google Scholar 

  • Dutton, R., Anisfeld, A. C., & Ernstberger, H. (2013). A novel sediment fingerprinting method using filtration: Application to the Mara River, East Africa. Journal of Soils and Sediments, 13, 1708–1723.

    Article  CAS  Google Scholar 

  • Dyer, F. J., & Olley, J. M. (1996). Preliminary results from determining sediment sources to the Tarago Reservoir, Victoria, Australia: Implications for sediment yield. In Erosion and sediment yield: Global and regional perspectives (pp. 143–151) (Proceedings of the Exeter Symposium), Wallingford.

  • Elliott, G., Campbell, B., & Loughran, R. (1990). Correlation of erosion measurements and soil caesium-137 content. The International Journal of Applied Radiation and Isotopes, 41, 713–717.

    Article  CAS  Google Scholar 

  • Evrard, O., Navratil, O., Ayrault, S., Ahmadi, M., Némery, J., Legout, C., et al. (2011). Combining suspended sediment monitoring and fingerprinting to determine the spatial origin of fine sediment in a mountainous river catchment. Earth Surface Processes and Landforms, 36, 1072–1089.

    Article  CAS  Google Scholar 

  • Flanagan, D. C., & Livingston, S. J. (1995). WEPP user summary. NSERL Report no. 11. USDAARS National Soil Erosion Research Laboratory, W. Lafayette, Ind.

  • Foster, I. D., Boardman, J., & Keay-Bright, J. (2007). Sediment tracing and environmental history for two small catchments, Karoo Uplands, South Africa. Geomorphology, 90, 126–143.

    Article  Google Scholar 

  • Foucher, A., Laceby, P. J., Salvador-Blanes, S., Evrard, O., Le Gall, M., Lefèvre, I., et al. (2015). Quantifying the dominant sources of sediment in a drained lowland agricultural catchment: The application of a thorium-based particle size correction in sediment fingerprinting. Geomorphology, 250, 271–281.

    Article  Google Scholar 

  • Fox, J. F. (2005). Fingerprinting using biogeochemical tracers to investigate watershed processes. Ph.D. thesis, University of Iowa.

  • Fox, J. F., Davis, C. M., & Martin, D. K. (2010). Sediment source assessment in a lowland watershed using nitrogen stable isotopes. Journal of the American Water Resources Association, 46, 1192–1204.

    Article  Google Scholar 

  • Fox, W. M., Johnson, M. S., Jones, S. R., Leah, R. T., & Copplestone, D. (1999). The use of sediment cores from stable and developing salt marshes to reconstruct historical contamination profiles in the Mersey Estuary, UK. Marine Environmental Research, 47, 311–329.

    Article  CAS  Google Scholar 

  • Fox, J. F., & Papanicolaou, A. N. (2007). The use of carbon and nitrogen isotopes to study watershed erosion processes. Journal of the American Water Resources Association, 43, 1047–1064.

    Article  CAS  Google Scholar 

  • Franks, S. W., & Rowan, J. S. (2000). Multi-parameter fingerprinting of sediment sources: Uncertainty estimation and tracer selection. In L. R. Bentley, C. A. Brebbia, W. G. Gray, G. F. Pinder, & J. F. Sykes (Eds.), Computational methods in water resources (pp. 1067–1074). Rotterdam: Balkema.

    Google Scholar 

  • Franz, C., Makeschin, F., Weiß, H., & Lorz, C. (2013). Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: A study on anthropogenic introduced chemical elements in an urban river basin. Science of the Total Environment, 452–453, 411–420.

    Article  CAS  Google Scholar 

  • Frostick, L. E., Lucas, P. M., & Reid, I. (1984). The infiltration of fine matrices into coarse-grained alluvial sediments and its implications for stratigraphic interpretation. Journal of the Geological Society of London, 141, 955–965.

    Article  Google Scholar 

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geoscience Frontiers, 7, 953–961.

    Article  Google Scholar 

  • Gao, B., Liu, Y., Sun, K., Liang, X. R., Peng, P., Sheng, G., et al. (2008). Precise determination of cadmium and lead isotopic compositions in river sediments. Analytica Chimica Acta, 612, 114–120.

    Article  CAS  Google Scholar 

  • Gibbs, M. (2008). Identifying source soils in contemporary estuarine sediments: A new compound-specific isotope method. Estuaries and Coasts, 31, 344–359.

    Article  Google Scholar 

  • Gibbs, M. (2014). Protocols on the use of the CSSI Technique to identify and apportion soil sources from land use. NIWA client report HAM2013-106 prepared for Joint FAO/IAEA division of nuclear techniques in food and agriculture (coordinated research project number D1.20.11).

  • Grabowski, R. C., & Gurnell, A. M. (2016). Diagnosing problems of fine sediment delivery and transfer in a lowland catchment. Aquatic Sciences, 78, 95–106.

    Article  Google Scholar 

  • Greenwood, P. (2012). Tracing fine-sediment using artificial radionuclides. In L. Clarke (Ed.), Geomorphological techniques (on-line edition) chapter 3; section 5.2 (pp. 1–10). London: British Society for Geomorphology.

    Google Scholar 

  • Grimes, C. B., John, B. E., Kelermen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., et al. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35, 643–646.

    Article  CAS  Google Scholar 

  • Grimshaw, D. L., & Lewin, J. (1980). Source identification for suspended sediments. Journal of Hydrology, 47, 151–162.

    Article  Google Scholar 

  • Guzmán, G., Quinton, J. N., Nearing, M. A., Mabit, L., & Gómez, J. A. (2013). Sediment tracers in water erosion studies: Current approaches and challenges. Journal of Soils and Sediments, 13, 816–833.

    Article  Google Scholar 

  • Haddadchi, A., Olley, J., & Laceby, P. (2014). Accuracy of mixing models in predicting sediment source contributions. Science of the Total Environment, 497–498, 139–152.

    Article  CAS  Google Scholar 

  • Haddadchi, A., Ryder, D. S., Evrard, O., & Olley, J. (2013). Sediment fingerprinting in fluvial systems: Review of tracers, sediment sources and mixing models. International Journal of Sediment Research, 28, 560–578.

    Article  Google Scholar 

  • Hancock, G. J., Wilkinson, S. N., Hawdon, A. A., & Keen, R. J. (2014). Use of fallout tracers 7Be, 210Pb and 137Cs to distinguish the form of sub-surface soil erosion delivering sediment to rivers in large catchments. Hydrological Processes, 28, 3855–3874.

    Article  CAS  Google Scholar 

  • Hartmann, P. C., Quinn, J. G., Cairns, R. W., & King, J. W. (2005). Depositional history of organic contaminants in Narragansett Bay, Rhode Island, USA. Marine Pollution Bulletin, 50, 388–395.

    Article  CAS  Google Scholar 

  • Harvey, J. W., Drummond, J. D., Martin, R. L., McPhillips, L. E., Packman, A. I., Jerolmack, D. J., et al. (2012). Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. Journal of Geophysical Research, 117, G00N11. doi:10.1029/2012JG002043.

    Article  CAS  Google Scholar 

  • Hasholt, B., Walling, D. E., & Owens, P. N. (2000). Sedimentation in arctic proglacial lakes: Mittivakkat Glacier, south-east Greenland. Hydrological Processes, 14, 679–699.

    Article  Google Scholar 

  • He, Q., & Walling, D. (1996). Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surface Processes and Landforms, 21, 141–154.

    Article  CAS  Google Scholar 

  • Helm, P. A., Milne, J., Hiriart-Baer, V., Crozier, P., Kolic, T., Lega, R., et al. (2011). Lake-wide distribution and depositional history of current- and past-use persistent organic pollutants in Lake Simcoe, Ontario, Canada. Journal of Great Lakes Research, 37, 132–141.

    Article  CAS  Google Scholar 

  • Hobo, N., Makaske, B., Middelkoop, H., & Wallinga, J. (2010). Reconstruction of floodplain sedimentation rates: A combination of methods to optimize estimates. Earth Surface Processes and Landforms, 35, 1499–1515.

    Article  Google Scholar 

  • Hom, W., Risebrou, R. W., Soutar, A., & Young, D. R. (1974). Deposition of DDE and polychlorinated biphenyls in dated sediments of Santa Barbara Basin. Science, 184, 1197–1199.

    Article  CAS  Google Scholar 

  • Horowitz, A. (1991). A primer on sediment-trace element chemistry, 2nd edition. Open-file report 9176, United States Geological Survey.

  • Horowitz, A. J., Stephens, V. C., Elrick, K. A., & Smith, J. A. (2012). Annual fluxes of sediment-associated trace/major element geochemistry of Lake Coeur d’Alene, Idaho, USA. Part II: Subsurface sediments. Hydrological Processes, 9, 35–54.

    Article  Google Scholar 

  • Hughes, A. O., Olley, J. M., Croke, J. C., & McKergow, L. A. (2009). Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia. Geomorphology, 104, 262–275.

    Article  Google Scholar 

  • Jones, C. S., & Schilling, K. E. (2011). Agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916–2009. Journal of Environmental Quality, 40, 1911–1923.

    Article  CAS  Google Scholar 

  • Kemp, P., Sear, D., Collins, A., Naden, P., & Jones, I. (2011). The impacts of fine sediment on riverine fish. Hydrological Processes, 25, 1800–1821.

    Article  Google Scholar 

  • Kimoto, A., Nearing, M., Shipitalo, M. J., & Polyakov, V. O. (2006). Multi-year tracking of sediment sources in a small agricultural watershed using rare earth elements. Earth Surface Processes and Landforms, 31, 1763–1774.

    Article  CAS  Google Scholar 

  • Koiter, A. J., Lobb, D. A., Owens, P. N., Petticrew, E. L., Tiessen, K. H., & Li, S. (2013a). Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fngerprinting. Journal of Soils and Sediments, 13, 1676–1691.

    Article  Google Scholar 

  • Koiter, A. J., Owens, P. N., Petticrew, E. L., & Lobb, D. A. (2013b). The behavioural characteristics of sediment properties and their implications for sediment fingerprinting as an approach for identifying sediment sources in river basins. Earth-Science Reviews, 125, 24–42.

    Article  CAS  Google Scholar 

  • Koiter, A. J., Owens, P. N., Petticrew, E. L., & Lobb, D. A. (2015). The role of gravel channel beds on the particle size and organic matter selectivity of transported fine-grained sediment: Implications for sediment fingerprinting and biogeochemical flux research. Journal of Soils and Sediments, 15, 2174–2188.

    Article  CAS  Google Scholar 

  • Krause, A. K., Franks, S. W., Kalma, J. D., Loughran, R. J., & Rowan, J. S. (2003). Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia. CATENA, 53, 327–348.

    Article  Google Scholar 

  • Krein, A., Petticrew, E., & Udelhoven, T. (2003). The use of fine sediment fractal dimensions and colour to determine sediment sources in a small watershed. CATENA, 53, 165–179.

    Article  CAS  Google Scholar 

  • Lamba, J., Karthikeyan, K. G., & Thompson, A. M. (2015a). Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting. Geoderma, 239–240, 25–33.

    Article  Google Scholar 

  • Lamba, J., Thompson, A. M., Karthikeyan, K. G., & Fitzpatrick, F. A. (2015b). Sources of fine sediment stored in agricultural lowland streams, Midwest, USA. Geomorphology, 236, 44–53.

    Article  Google Scholar 

  • Lambert, C. P., & Walling, D. E. (1988). Measurement of channel storage of suspended sediment in a gravel-bed river. CATENA, 15, 65–80.

    Article  Google Scholar 

  • Land, M., Ohlander, B., Ingri, J., & Thunberg, J. (1999). Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction. Chemical Geology, 160, 121–138.

    Article  CAS  Google Scholar 

  • Larsen, L., Harvey, J., Skalak, K., & Goodman, M. (2015). Fluorescence-based source tracking of organic sediment in restored and unrestored urban streams. Limnology and Oceanography, 60, 1439–1461.

    Article  CAS  Google Scholar 

  • Latimer, J. S., & Quinn, J. G. (1996). Historical trends and current inputs of hydrophobic organic compounds in an urban estuary: The sedimentary record. Environmental Science and Technology, 30, 623–633.

    Article  CAS  Google Scholar 

  • Lees, J. A. (1997). Mineral magnetic properties of mixtures of environmental and synthetic materials: Linear additivity and interaction effects. Geophysical Journal International, 131, 335–346.

    Article  Google Scholar 

  • Loisel, H., Mangin, A., Vantrepotte, V., Dessailly, D., Dinh, D. N., Garnesson, P., et al. (2014). Variability of suspended particulate matter concentration in coastal waters under the Mekong’s influence from ocean color (MERIS) remote sensing over the last decade. Remote Sensing of Environment, 150, 218–230.

    Google Scholar 

  • Longworth, G., Becker, L. W., Thompson, R., Oldfield, F., Dearing, J. A., & Rummery, T. A. (1979). Mossbauer and magnetic studies of secondary iron oxides in soil. Journal of Soil Science, 30, 93–110.

    Article  CAS  Google Scholar 

  • Mabit, L., Benmansour, M., & Walling, D. (2008). Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. Journal of Environmental Radioactivity, 99, 1799–1807.

    Article  CAS  Google Scholar 

  • Mabit, L., Bernard, C., & Laverdiére, M. (2002). Quantification of soil redistribution and sediment budget in a Canadian watershed from fallout caesium-137 (137Cs) data. Canadian Journal of Soil Science, 82, 423–431.

    Article  CAS  Google Scholar 

  • Madej, M. A. (2007). A strategy to reduce fine sediment from tributaries in the Trinity River Basin. A report in fulfillment of the Trinity River Restoration Project Agreement # 04AA202062. U.S. Geological Survey Western Ecological Research Center Redwood Field Station. Arcata, CA.

  • Martínez-Carreras, N., Udelhoven, T., Krein, A., Gallart, F., Iffly, J. F., Ziebel, J., et al. (2010). The use of sediment colour measured by diffuse reflectance spectrometry to determine sediment sources: Application to the Attert River catchment (Luxembourg). Journal of Hydrology, 382, 49–63.

    Article  Google Scholar 

  • Matsumoto, K., Kawamura, K., Uchida, M., & Shibata, Y. (2007). Radiocarbon content and stable carbon isotopic ratios of individual fatty acids in subsurface soil: Implication for selective microbial degradation and modification of soil organic matter. Geochemical Journal, 41, 483–492.

    Article  CAS  Google Scholar 

  • Middelkoop, H. (2002). Reconstructing floodplain sedimentation rates from heavy metal profiles by inverse modelling. Hydrological Processes, 16, 47–64.

    Article  Google Scholar 

  • Mil-Homens, M., Blum, J., Canário, J., Caetano, M., Costa, A. M., Lebreiro, S. M., et al. (2013). Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin. Chemical Geology, 336, 62–71.

    Article  CAS  Google Scholar 

  • Mukundan, R., Radcliffe, D. E., Ritchie, J. C., Risse, L. M., & Mckinley, R. (2010). Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream. Journal of Environmental Quality, 39, 1328–1337.

    Article  CAS  Google Scholar 

  • Mukundan, R., Walling, D. E., Gellis, A. C., Slattery, M. C., & Radcliffe, D. E. (2012). Sediment source fingerprinting: Transforming from a research tool to a management tool. Journal of the American Water Resources Association, 48, 1241–1257.

    Article  Google Scholar 

  • Naden, P. S., Murphy, J. F., Old, G. H., Newman, J., Scarlett, P., Harman, M., et al. (2016). Understanding the controls on deposited fine sediment in the streams of agricultural catchments. Science of the Total Environment, 547, 366–381.

    Article  CAS  Google Scholar 

  • Nagle, G. N., Lassoie, J. P., Fahey, T. J., & McIntyre, S. C. (2000). The use of caesium-137 to estimate agricultural erosion on steep slopes in a tropical watershed. Hydrological Processes, 14, 957–969.

    Article  Google Scholar 

  • Navratil, O., Legout, C., Gateuille, D., Esteves, M., & Liebault, F. (2010). Assessment of intermediate fine sediment storage in a braided river reach (Southern French Prealps). Hydrological Processes, 4, 1318–1332.

    Google Scholar 

  • Newbold, J. D., Thomas, S. A., Minshall, G. W., Cushing, C. E., & Georgian, T. (2005). Deposition, benthic residence, and resuspension of fine organic particles in a mountain stream. Limnology and Oceanography, 50, 1571–1580.

    Article  CAS  Google Scholar 

  • Nicholls, D. J. (2001). The source and behaviour of fine sediment deposits in the River Torridge Devon and their implications for salmon spawning. Ph.D. thesis, University of Exeter.

  • Olley, J., Burton, J., Smolders, K., Pantus, F., & Pietsch, T. (2013). The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-east Queensland, Australia. Hydrological Processes, 27, 885–895.

    Article  CAS  Google Scholar 

  • Olley, J. M., & Caitcheon, G. (2000). Major element chemistry of sediments from the Darling-Barwon river and its tributaries: Implications for sediment and phosphorus sources. Hydrological Processes, 14, 1159–1175.

    Article  Google Scholar 

  • Owens, P. N., Blake, W. H., Giles, T. R., & Williams, N. D. (2012). Determining the effects of wildfire on sediment sources using 137Cs and unsupported 210Pb: The role of natural landscape disturbances and driving forces. Journal of Soils and Sediments, 12, 982–994.

    Article  CAS  Google Scholar 

  • Owens, D. W., Jopke, P., Hall, D. W., Balousek, J., & Roa, A. (2000). Soil erosion from two small construction sites, Dane County, Wisconsin. Fact Sheet FS-109-00, United States Geological Survey.

  • O’Geen, A. T., Budd, R., Gan, J., Maynard, J. J., Parikh, S. J., & Dahlgren, R. A. (2010). Chapter One - Mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. Advances in Agronomy, 108, 1–76.

    Article  CAS  Google Scholar 

  • Palmer, M. A., Covich, A. P., Lake, S., Biro, P., Brooks, J. J., Cole, J., et al. (2000). Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes: A disruption or intensification of the direct and indirect chemical, physical, or biological interactions between aquatic sediment biota and biota living above the sediments may accelerate biodiversity loss and contribute to the degradation of aquatic and riparian habitats. BioScience, 50, 1062–1075.

    Article  Google Scholar 

  • Papanicolaou, A. N., Fox, J. F., & Marshall, J. (2003). Soil fingerprinting in the Palouse Basin, USA, using stable carbon and nitrogen isotopes. International Journal of Sediment Research, 18, 278–284.

    Google Scholar 

  • Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE, 5, e9672.

    Article  CAS  Google Scholar 

  • Peart, M. R., & Walling, D. E. (1986). Fingerprinting sediment source: The example of a drainage basin in Devon, UK. In D. B. S. Delivery, D. E. Walling, & M. P. Bordas (Eds.) IAHS publication no. 159. (pp. 41–55). Wallingford: IAHS Press.

  • Petit, J. C. J., DeJong, J., Chou, L., & Mattielli, N. (2008). Development of Cu and Zn isotope MC-ICPMS measurements: Application to suspended particulate matter and sediments from the Scheldt Estuary. Geostandards and Geoanalytical Research, 32, 149–166.

    Article  CAS  Google Scholar 

  • Phillips, D., & Gregg, J. (2003). Source partitioning using stable isotopes: Coping with too many sources. Oecologia, 136, 261–269.

    Article  Google Scholar 

  • Phillips, J. M., Russell, M. A., & Walling, D. E. (2000). Time-integrated sampling of fluvial suspended sediment: A simple methodology for small watersheds. Hydrological Processes, 14, 2589–2602.

    Article  Google Scholar 

  • Polyakov, V. O., Nearing, M. A., & Shipitalo, M. J. (2004). Tracking sediment redistribution in a small watershed: Implications for agro-landscape evolution. Earth Surface Processes and Landforms, 29, 1275–1291.

    Article  Google Scholar 

  • Poulenard, J., Legout, C., Némery, J., Bramorski, J., Navratil, O., Douchin, A., et al. (2012). Tracing sediment sources during floods using Diffuse Reflectance Infrared Fourier Transform Spectrometry (DRIFTS): A case study in a highly erosive mountainous catchment (Southern French Alps). Journal of Hydrology, 414–415, 452–462.

    Article  Google Scholar 

  • Pulley, S., & Rowntree, K. (2016a). Stages in the life of a magnetic grain: Sediment source discrimination, particle size effects and spatial variability in the South African Karoo. Geoderma, 271, 134–143.

    Article  CAS  Google Scholar 

  • Pulley, S., & Rowntree, K. (2016b). The use of an ordinary colour scanner to fingerprint sediment sources in the South African Karoo. Journal of Environmental Management, 165, 253–262.

    Article  CAS  Google Scholar 

  • Qu, L. Q, (2014). Remote sensing suspended sediment concentration in the Yellow River. Ph.D. thesis, University of Connecticut.

  • Rehkämper, M., Wombacker, R., Horner, T. J., & Xue, Z. (2011). Natural and anthropogenic Cd isotope variations. In M. Baskaran (Ed.), Handbook of environmental isotope geochemistry. Advances in isotope geochemistry (pp. 125–154). Berlin: Springer.

    Google Scholar 

  • Rollinson, H. (1993). Using geochemical data: Evaluation, presentation, interpretation. Harlow: Longman.

    Google Scholar 

  • Rousseeuw, P., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

    Article  Google Scholar 

  • Rowan, J. S., Black, S., & Franks, S. W. (2012). Sediment fingerprinting as an environmental forensics tool explaining cyanobacteria blooms in lakes. Applied Geography, 32, 832–843.

    Article  Google Scholar 

  • Russell, M. A., Walling, D. E., & Hodgkinson, R. A. (2001). Suspended sediment sources in two small lowland catchments in the UK. Journal of Hydrology, 252, 1–24.

    Article  CAS  Google Scholar 

  • Sergio, S.-V., Claudio, B.-L., Roberto, M. D. A., Renan, C., Max, G., Andrew, S., et al. (2017). The CSSIAR v. 1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes. SoftwareX, 6, 13–18.

    Article  Google Scholar 

  • Shackle, V. J., Hughes, S., & Lewis, V. T. (1999). The influence of three methods of gravel cleaning on brown trout, Salmo trutta, egg survival. Hydrological Processes, 13, 477–486.

    Article  Google Scholar 

  • Sherriff, S. C., Franks, S. W., Rowan, J. S., Fenton, O., & OhUallachain, D. (2015). Uncertainty-based assessment of tracer selection, tracer non-conservativeness and multiple solutions in sediment fingerprinting using synthetic and field data. Journal of Soils and Sediments, 15, 2101–2116.

    Article  CAS  Google Scholar 

  • Sherriff, S. C., Rowan, J. S., Fenton, O., Jordan, P., Melland, A. R., Mellander, P. E., et al. (2016). Storm event suspended sediment-discharge hysteresis and controls in agricultural watersheds: Implications for watershed scale sediment management. Environmental Science and Technology, 50, 1769–1778.

    Article  CAS  Google Scholar 

  • Shi, Z. L., Wen, A. B., Zhang, X. B., He, X. B., Li, H., & Yan, D. C. (2012). 137Cs and 210Pbex as soil erosion tracers in the hilly Sichuan Basin and the Three Gorges Area of China. Journal of Mountain Science, 9, 27–33.

    Article  CAS  Google Scholar 

  • Small, I. F., Rowan, J. S., & Franks, S. W. (2002). Quantitative sediment fingerprinting using a Bayesian uncertainty estimation framework, In F. J. Dyer, M. C. Thoms, & J. M. Olley (Eds.), The structure, function and management implications of fluvial sedimentary systems, IAHS publication, no. 276 (pp. 443–450). Wallingford: IAHS Press.

  • Small, I. F., Rowan, J. S., Franks, S. W., Wyatt, A., & Duck, R. W. (2004). Bayesian approach provides a robust tool for environmental forensic geoscience applications. In K. Pye & D. J. Croft (Eds.), Forensic geoscience: Principles, techniques and applications, special publications (Vol. 232, pp. 207–213). London: Geological Society.

    Google Scholar 

  • Smith, H. G., & Blake, W. H. (2014). Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections. Geomorphology, 204, 177–191.

    Article  Google Scholar 

  • Smith, H. G., Blake, W. H., & Owens, P. N. (2013). Discriminating fine sediment sources and the application of sediment tracers in burned catchments: A review. Hydrological Processes, 27, 943–958.

    Article  Google Scholar 

  • Takeda, A., Kimura, K., & Yamasaki, S. (2004). Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma, 119, 291–307.

    Article  CAS  Google Scholar 

  • Tang, X. Y., Zhang, X. B., Guan, Z., Long, Y., Tang, Q., & Lü, Y. J. (2014). Historical sediment record of 137Cs, δ-HCH, and δ13C reflects the impact of land use on soil erosion. Journal of Mountain Science, 11, 866–874.

    Article  Google Scholar 

  • Theuring, P., Collins, A. L., & Rode, M. (2015). Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia. Science of the Total Environment, 526, 77–87.

    Article  CAS  Google Scholar 

  • Thevenon, F., de Alencastro, L. F., Loizeau, J. L., Adatte, T., Grandjean, D., Wildi, W., et al. (2013). A high-resolution historical sediment record of nutrients, trace elements and organochlorines (DDT and PCB) deposition in a drinking water reservoir (Lake Brêt, Switzerland) points at local and regional pollutant sources. Chemosphere, 90, 2444–2452.

    Article  CAS  Google Scholar 

  • Tian, J. L., Zhou, P. H., & Liu, P. L. (1994). REE tracer method for studies on soil erosion. International Journal of Sediment Research, 9, 39–46.

    Google Scholar 

  • Tiessen, K. H. D., Elliott, J. A., Stainton, M., Yarotski, J., Flaten, D. N., & Lobb, D. A. (2011). The effectiveness of small-scale headwater storage dams and reservoirs on stream water quality and quantity in the Canadian Prairies. Journal of Soil and Water Conservation, 66, 158–171.

    Article  Google Scholar 

  • Toth, S. J., & Alderfer, R. B. (1960). A procedure for tagging water stable soil aggregates with Co-60. Soil Science, 89, 36–37.

    Article  CAS  Google Scholar 

  • Turnbull, L., Brazier, R. E., Wainwright, J., Dixon, L., & Bol, R. (2008). Use of carbon isotope analysis to understand semi-arid erosion dynamics and long-term semi-arid land degradation. Rapid Communications in Mass Spectrometry, 22, 1697–1702.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (1999). Protocol for developing sediment TMDLs. EPA 841-B-99-004. Office of water (4503F), United States Environmental Protection Agency, Washington D.C. 132 pp.

  • USDA-ARS. (2006). RUSLE2 1.126.6.4. USDA-ARS, Washington, DC (http://fargo.nserl.purdue.edu/rusle2_dataweb/RUSLE2_Index.htm. Accessed June 27, 2014)).

  • van der Waal, B., Rowntree, K., & Pulley, S. (2015). Flood bench chronology and sediment source tracing in the upper Thina catchment, South Africa: The role of transformed landscape connectivity. Journal of Soils and Sediments, 15, 2398–2411.

    Article  CAS  Google Scholar 

  • Vinten, A. J. A., Loades, K., Addy, S., Richards, S., Stutter, M., Cook, Y., et al. (2014). Assessment of the use of sediment fences for control of erosion and sediment phosphorus loss after potato harvesting on sloping land. Science of the Total Environment, 468–469, 1234–1244.

    Article  CAS  Google Scholar 

  • Walden, J., Slattery, M. C., & Burt, T. P. (1997). Use of mineral magnetic measurements to fingerprint suspended sediment sources: Approaches and techniques for data analysis. Journal of Hydrology, 202, 353–372.

    Article  Google Scholar 

  • Wallbrink, P. J., & Murray, A. S. (1993). Use of fallout radionuclides as indicators of erosion processes. Hydrological Processes, 7, 297–304.

    Article  Google Scholar 

  • Wallbrink, P. J., Murray, A. S., & Olley, J. M. (1999). Relating suspended sediment to its original depth using fallout radionuclides. Soil Science Society of America Journal, 63, 369–378.

    Article  CAS  Google Scholar 

  • Wallbrink, P. J., Murray, A. S., Olley, J. M., & Olive, L. J. (1998). Determining sources and transit times of suspended sediment in the Murrumbidgee River, New South Wales, Australia, using fallout 137Cs and 210Pb. Water Resources Research, 34, 879–887.

    Article  CAS  Google Scholar 

  • Walling, D. E. (1983). The sediment delivery problem. Journal of Hydrology, 65, 209–237.

    Article  Google Scholar 

  • Walling, D. E. (2005). Tracing suspended sediment sources in catchments and river systems. Science of the Total Environment, 344, 159–184.

    Article  CAS  Google Scholar 

  • Walling, D. E. (2013a). Beryllium-7: The cinderella of fallout radionuclide sediment tracers? Hydrological Processes, 27, 830–844.

    Article  CAS  Google Scholar 

  • Walling, D. E. (2013b). The evolution of sediment source fingerprinting investigations in fluvial systems. Journal of Soils and Sediments, 13, 1658–1675.

    Article  Google Scholar 

  • Walling, D. E., & Amos, C. M. (1999). Source, storage, and mobilisation of fine sediment in a chalk stream system. Hydrological Processes, 13, 323–340.

    Article  Google Scholar 

  • Walling, D. E., Collins, A. L., & McMellin, G. K. (2003). A reconnaissance survey of the source of interstitial fine sediment recovered from salmonid spawning gravels in England and Wales. Hydrobiologia, 497, 91–108.

    Article  Google Scholar 

  • Walling, D. E., Owens, P. N., & Leeks, G. J. L. (1999). Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrological Processes, 13, 955–975.

    Article  Google Scholar 

  • Walser, C. A., & Bart, H. L., Jr. (2006). Influence of agriculture on in-stream habitat and fish community structure in Piedmont watersheds of the Chattahoochee River System. Ecology of Freshwater Fish, 8, 237–246.

    Article  Google Scholar 

  • Warrick, J. A. (2013). Dispersal of fine sediment in nearshore coastal waters. Journal of Coastal Research, 29, 579–596.

    Article  Google Scholar 

  • Weiss, D. J., Rehkämper, M., Schoenberg, R., McLaughlin, M., Kirby, J., Campbell, P. G. C., et al. (2008). Application of nontraditional stable-isotopes to the study of sources and fate of metals in the environment. Environmental Science and Technology, 42, 655–664.

    Article  CAS  Google Scholar 

  • Wen, X. Y., Huang, C. M., Tang, Y., Gong-Bo, S. L., Hu, X. X., & Wang, Z. W. (2014). Rare earth elements: A potential proxy for identifying the lacustrine sediment source and soil erosion intensity in karst areas. Journal of Soils and Sediments, 14, 1693–1702.

    Article  CAS  Google Scholar 

  • Wethered, A. S., Ralph, T. J., Smith, H. G., Fryirs, K. A., & Heijnis, H. (2015). Quantifying fluvial (dis)connectivity in an agricultural catchment using a geomorphic approach and sediment source tracing. Journal of Soils and Sediments, 15, 2052–2066.

    Article  CAS  Google Scholar 

  • Wilkinson, S. N., Wallbrink, P. J., Hancock, G. J., Blake, W. H., Shakesby, R. A., & Doerr, S. H. (2009). Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Geomorphology, 110, 140–151.

    Article  Google Scholar 

  • Williams, M. A., Myrold, D. D., & Bottomley, P. J. (2006). Carbon flow from 13C-labeled straw and root residues into the phospholipid fatty acids of a soil microbial community under field conditions. Soil Biology & Biochemistry, 38, 759–768.

    Article  CAS  Google Scholar 

  • Wombacher, F., Rehkämper, M., Mezger, K., & Münker, C. (2003). Stable isotope composition of cadmium in geological materials and meteorites determined by multiple collector-ICPMS. Geochimica et Cosmochimica Acta, 67, 4639–4654.

    Article  CAS  Google Scholar 

  • Wood, P., & Armitage, P. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21, 203–217.

    Article  CAS  Google Scholar 

  • Wooldridge, D. D. (1965). Tracing soil particle movement with Fe-59. Soil Science Society of America Proceedings, 29, 469–472.

    Article  Google Scholar 

  • Young, R. A., & Holt, R. F. (1968). Tracing soil movement with fluorescent glass particles. Soil Science Society of America Proceedings, 32, 600–602.

    Article  Google Scholar 

  • Yu, L., & Oldfield, F. (1989). A multivariate mixing model for identifying sediment source from magnetic measurements. Quaternary Research, 32, 168–181.

    Article  Google Scholar 

  • Zapata, F. (2003). The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: Recent advances and future developments. Soil and Tillage Research, 69(1–2), 3–13.

    Article  Google Scholar 

  • Zhang, X. C., Friedrich, J. M., Nearing, M. A., & Norton, L. D. (2001). Potential use of rare earth oxides as tracers for soil erosion and aggregation studies. Soil Science Society of America Journal, 65, 1508–1515.

    Article  CAS  Google Scholar 

  • Zhang, X. C., & Liu, B. L. (2016). Using multiple composite fingerprints to quantify fine sediment source contributions: A new direction. Geoderma, 268, 108–118.

    Article  Google Scholar 

  • Zhang, X. B., Long, Y., He, X. B., Wen, A. B., & Yan, D. C. (2012). Use of 137Cs and 210Pbex peaks produced by events in the catchment for dating sediments in the Jiulongdian Reservoir, Cuxiong, Yunnan Province, China. In A. L. Collins, V. Golosov, A. J. Horowitz, X. X. Lu, M. Stone, D. E. Walling, et al. (Eds.), Erosion and Sediment Yields in Changing Environment (pp. 378-384) (Proceedings of an IAHS international commission on continental erosion). IAHS publication no. 356. Wallingford: IAHS Press.

  • Zhang, W., Tang, X. Y., Weisbrod, N., Zhao, P., & Reid, B. J. (2015). A coupled field study of subsurface fracture flow and colloid transport. Journal of Hydrology, 524, 476–488.

    Article  CAS  Google Scholar 

  • Zhang, X., Wen, Z., Feng, M., Yang, Q., & Zheng, J. (2007). Application of 137Cs fingerprinting technique to interpreting sediment production records from reservoir deposits in a small catchment of the Hilly Loess Plateau, China. Science in China, Series D: Earth Sciences, 50, 254–260.

    Article  CAS  Google Scholar 

  • Zhu, M. Y., Tan, S. D., Liu, W. Z., & Zhang, Q. F. (2010). A review of REE tracer method used in soil erosion studies. Agricultural Sciences in China, 9, 1167–1174.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the GAIA Surface Soil Resource Inventory and Integration (SSORii) Project of MOE, Kangwon National University Research Grant (2013: C1009703-01-01), Japan Society for the Promotion of Science (RONPAKU Program, ID No. CAS-11313), National Natural Science Foundation of China (Nos. 21307152 and 41471268) and CAS President’s International Fellowship Initiative Fellowship (No. 2016VEA040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Yu Tang, Jae E. Yang or Taku Nishimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Tang, XY., Yang, J.E. et al. A review of source tracking techniques for fine sediment within a catchment. Environ Geochem Health 39, 1221–1243 (2017). https://doi.org/10.1007/s10653-017-9959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9959-9

Keywords

Navigation