Skip to main content
Log in

The Effect of Ischemia and Reperfusion on Enteric Glial Cells and Contractile Activity in the Ileum

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

We investigated the effects of ischemia followed by different periods of reperfusion (I/R) on immunoreactive S100β-positive glial and Hu-immunoreactive neurons co-expressing the P2X2 receptor in the myenteric plexus of the rat ileum.

Methods

The ileal artery was occluded for 35 min with an atraumatic vascular clamp. The animals were killed 24 h, 72 h, and 1 week after ischemia. Sham animals were not submitted to ileal artery occlusion. The relative density, size, and co-localization of P2X2 receptor-expressing cells in relation to S100β-immunoreactive glial and Hu-immunoreactive neuronal cells were evaluated. Additionally, we analyzed the effects of I/R on gastrointestinal transit and ileum contractile activity.

Results

The cellular density of P2X2 receptor and neuronal Hu immunoreactivity/cm2 decreased after I/R, whereas glial S100β immunoreactivity/cm2 increased. No significant differences between sham and I/R groups were observed regarding the perikarya area of Hu-positive neurons. The area of S100β-immunoreactive glial cells increased by 24.1 % 1 week after I/R compared with the 24 h group. Methylene blue progression along the small intestine decreased (P < 0.05) from 24.5 ± 2.3 % in the sham group to 17.2 ± 2.0 % 1 week post-ischemia. We noted a significant (P < 0.05) decrease in the maximal contraction amplitude triggered by electrical field stimulation in the presence of ATP in preparations submitted to 24 h of I/R.

Conclusions

Changes in the P2X2 receptor density parallel myenteric neuronal loss following I/R of the rat ileum. This, together with the increase in the activated (oversized) glial cells, may contribute to decreased GI motility after I/R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–294.

    Article  CAS  PubMed  Google Scholar 

  2. Rühl A. Glial cells in the gut. Neurogastroenterol Motil. 2005;17:777–790.

    Article  PubMed  Google Scholar 

  3. Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2012;9:625–632.

    Article  CAS  PubMed  Google Scholar 

  4. Dogiel, AS. Über den Bau der Ganglien in den Geflechtendes Darmesund der Gallenblase des Menschen und der Säugestiere [German]. Arch Anat Physiol Leypizig. Anat Abt Jg. 1899;130–158.

  5. Gabella G. Fine structure of the myenteric plexus in the guinea-pig ileum. J Anat.. 1972;111:69–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Gershon MD, Rothman TH. Enteric glia. Glia. 1991;4:195–204.

    Article  CAS  PubMed  Google Scholar 

  7. Hanani M, Reichenbach A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res. 1994;278:153–160.

    Article  CAS  PubMed  Google Scholar 

  8. Abbrachio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signaling in the nervous system: an overview. Trends Neurosci. 2009;32:19–29.

    Article  Google Scholar 

  9. Vulchanova L, Arvidsson U, Riedl M, et al. Differential distribution of two ATP-gated ion channels (P2x receptors) determined by immunohistochemistry. Proc Natl Acad Sci. 1996;93:8063–8067.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Castelucci P, Robbins HL, Poole DP, Furness JB. The distribution of purine P2X2 receptors in the guinea pig enteric nervous system. Histochem Cell Biol. 2002;117:415–422.

    Article  CAS  PubMed  Google Scholar 

  11. Hu HZ, Gao N, Lin Z, Liu S, et al. P2X7 receptors in the enteric nervous system of guinea-pig small intestine. J Comp Neurol. 2001;440:299–310.

    Article  CAS  PubMed  Google Scholar 

  12. Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB. The distribution of P2X3 purine receptor subunits in the guinea-pig enteric nervous system. Auton Neurosci.. 2002;101:39–47.

    Article  CAS  PubMed  Google Scholar 

  13. Van Nassauw L, Brouns I, Adraensen D, et al. Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum. Histochem Cell Biol. 2002;118:193–203.

    PubMed  Google Scholar 

  14. Xiang Z, Burnstock G. Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol. 2005;124:379–390.

    Article  CAS  PubMed  Google Scholar 

  15. Xiang Z, Burnstock G. P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol. 2004;12:169–179.

    Article  Google Scholar 

  16. Yu Q, Zhao Z, Sun J, et al. Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol. 2010;133:177–188.

    Article  CAS  PubMed  Google Scholar 

  17. Giaroni C, Knight GE, Ruan H-Z, et al. P2 receptors in the murine gastrointestinal tract. Neuropharmacology. 2002;43:1313–1323.

    Article  CAS  PubMed  Google Scholar 

  18. Castelucci P, Robbins HL, Furness JB. P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res. 2003;312:167–174.

    CAS  PubMed  Google Scholar 

  19. Vanderwinden JM, Timmermans JP, Schiffmann SN. Glial cells, but not interstitial cells, express P2X7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res. 2003;312:149–154.

    PubMed  Google Scholar 

  20. Van Nassauw L, Brouns I, Adraensen D, et al. Region-specific distribution of the P2Y4 receptor in enteric glial cells and interstitial cells of Cajal within the guinea-pig gastrointestinal tract. Auton Neurosc: Basic Clin.. 2006;126:299–306.

    Article  Google Scholar 

  21. Piao DX, Jiang CH, Kosata M, et al. Cytoplasmic delayed neuronal death in the myenteric plexus of the rat small intestine after ischemia. Arch Histol Cytol. 1999;62:383–392.

    Article  CAS  PubMed  Google Scholar 

  22. Lindestrom L, Ekblad E. Structural and neuronal changes in rat ileum after ischemia with reperfusion. Dig Dis Sci. 2004;49:1212–1222.

    Article  PubMed  Google Scholar 

  23. Calcina F, Barocelli E, Bertoni S, et al. Effect of N-methyl-d-aspartate receptor blockade on neuronal plasticity and gastrointestinal transit delay induced by ischemia/reperfusion in rats. Neuroscience. 2005;134:39–49.

    Article  CAS  PubMed  Google Scholar 

  24. Rivera LR, Thacker M, Castelucci P, et al. The reactions of specific neuron types to intestinal ischemia in the guinea pig enteric nervous system. Acta Neuropathol. 2009;118:261–270.

    Article  PubMed  Google Scholar 

  25. Thacker M, Rivera LR, Cho HJ, Furness JB. The relationship between glial distortion and neuronal changes following intestinal ischemia and reperfusion. Neurogastroenterol Motil. 2011;1:1–10.

    Google Scholar 

  26. Paulino AS, Palombit K, Cavriani G, et al. Effects of ischemia and reperfusion on P2X2 receptor expressing neurons of the rat ileum enteric nervous system. Dig Dis Sci. 2011;56:2262–2277.

    Article  CAS  PubMed  Google Scholar 

  27. Palombit K, Mendes CE, Tavares-de-Lima W, et al. Effects of ischemia and reperfusion on subpopulations of rat enteric neurons expressing the P2X7 receptor. Dig Dis Sci. 2013;58:3429–3439.

    Article  CAS  PubMed  Google Scholar 

  28. Vieira C, Magalhães-Cardoso MT, et al. Feed-forward inhibition of CD73 and upregulation of adenosine deaminase contribute to the loss of adenosine neuromodulation in postinflammatory ileitis. Mediators Inflamm. 2014;2014:254640.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Vieira C, Duarte-Araújo M, Adães S, Magalhães-Cardoso T, Correia-de-Sá P. Muscarinic M3 facilitation of acetylcholine release from rat myenteric neurons depends on adenosine outflow leading to activation of excitatory A2A receptors. Neurogastroenterol Motil. 2009;21:1118–e95.

    Article  CAS  PubMed  Google Scholar 

  30. Misawa R, Girotti PA, Mizuno MS, et al. Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons. World J Gastroenterol. 2010;16:3651–3663.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Girotti PA, Misawa R, Palombit K, et al. Differential effects of undernourishment on the differentiation and maturation of rat enteric neurons. Cell Tissue Res. 2013;353:367–380.

    Article  CAS  PubMed  Google Scholar 

  32. Mizuno MS, Crisma AR, Borelli P, Castelucci P. Expression of the P2X2 receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse. World J Gastroenterol. 2012;18:4693–4703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mizuno MS, Crisma AR, Borelli P, et al. Distribution of the P2X2 receptor and chemical coding in ileal enteric neurons of obese male mice (ob/ob). World J Gastroenterol. 2014;14:20(38):13911–13919.

  34. Ren J, Bian X, DeVries M, Schnegelsberg B, et al. P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol. 2003;552:809–821.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zhou X, Galligan JJ. P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J Physiol. 1996;496:719–729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bian X, Ren J, DeVries M, et al. Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol. 2003;551:309–322.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ohta T, Kubota A, Murakami M, Otsuguro K-I, Ito S. P2X2 receptors are essential for [Ca2+]i increases in response to ATP in cultured rat myenteric neurons. Am J Physiol (Gastrointest Liver Physiol). 2005;289:935–948.

    Article  Google Scholar 

  38. De Giorgio R, Bovara M, Barbara G, et al. Anti-HuD-induced neuronal apoptosis underlying paraneoplastic gut dysmotility. Gastroenterology. 2003;125:70–79.

    Article  PubMed  Google Scholar 

  39. Lawson VA, Furness JB, Klemm HM, et al. The brain to gut pathway: a possible route of prion transmission. Gut. 2010;59:1643–1651.

    Article  CAS  PubMed  Google Scholar 

  40. Rivera LR, Pontell L, Cho HJ, et al. Knock out of neuronal nitric oxide synthase exacerbates intestinal ischemia/reperfusion injury in mice. Cell Tissue Res. 2012;349:565–576.

    Article  CAS  PubMed  Google Scholar 

  41. Castelucci P, de Souza RR, de Angelis RC, et al. Effects of pre- and postnatal protein deprivation and postnatal refeeding on myenteric neurons of the rat large intestine: a quantitative morphological study. Cell Tissue Res. 2002;310:1–7.

    Article  CAS  PubMed  Google Scholar 

  42. Galligan JJ. Pharmacology of synaptic transmission in the enteric nervous system. Curr Opin Pharmacol. 2002;2:623–629.

    Article  CAS  PubMed  Google Scholar 

  43. Boesmans W, Cirillo C, Van den Abbeel V, et al. Neurotransmitters involved in fast excitatory neurotransmission directly activate enteric glial cells. Neurogastroenterol Motil. 2013;25:151–160.

    Article  Google Scholar 

  44. Gulbransen BD, Sharkey KA. Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology. 2009;136:1349–1358.

    Article  CAS  PubMed  Google Scholar 

  45. Von Boyen GB, Schulte N, Pflüger C, et al. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 2011;11:3.

    Article  Google Scholar 

  46. Ferri GL, Probert L, Cocchia D, et al. Evidence for the presence of S-100 protein in the glial component of the human enteric nervous system. Nature. 1982;297:409–410.

    Article  CAS  PubMed  Google Scholar 

  47. Marosti AR, da Silva MV, Palombit K, Mendes CE, Tavares-de-Lima W, Castelucci P. Differential effects of intestinal ischemia and reperfusion in rat enteric neurons and glial cells expressing P2X2 receptors. Histol Histopathol. 2015;30:489–501.

    CAS  PubMed  Google Scholar 

  48. Duarte-Araújo M, Nascimento C, Timóteo MA, et al. Relative contribution of ecto-ATPase and ecto-ATPDase pathways to the biphasic effect of ATP on acetylcholine release from myenteric motoneurons. Br J Pharmacol. 2009;156:519–533.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Reese JH, Cooper JR. Modulation of the release of acetylcholine from ileal synaptosomes by adenosine and adenosine 5′-triphosphate. J Pharmacol Exp Ther. 1982;223:612–616.

    CAS  PubMed  Google Scholar 

  50. Barthó L, Undi S, Benkó R, et al. Multiple motor effects of ATP and their inhibition by P purinoceptor antagonist, pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid in the small intestine of the guinea-pig. Basic Clin Pharmacol Toxicol. 2006;98:488–495.

    Article  PubMed  Google Scholar 

  51. Undi S, Benkó R, Wolf M, et al. Purinergic nerves mediate the non-nitrergic relaxation of the human ileum in response to electrical field stimulation. Brain Res Bull. 2006;71:242–244.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Professors Jackson Cioni Bittencourt and Carol Fuzeti Elias for the use of their fluorescence microscope and Rosana Prisco for statistical analysis. These studies were supported by (FAPESP/São Paulo Foundation Research/2008/05314-5, 2008/08728-5, 2012/06434-0; 2012/00259-1). The experiments performed at ICBAS-UP were partially supported by FCT (FCT project Pest-OE/SAU/UI215/2014) with the participation of FEDER funding. Cátia Vieira and Isabel Silva were in receipt of Ph.D. studentships from FCT (SFRH/BD/79091/2011 and SFRH/BD/88855/2012, respectively).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Castelucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, C.E., Palombit, K., Vieira, C. et al. The Effect of Ischemia and Reperfusion on Enteric Glial Cells and Contractile Activity in the Ileum. Dig Dis Sci 60, 2677–2689 (2015). https://doi.org/10.1007/s10620-015-3663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3663-3

Keywords

Navigation