Skip to main content
Log in

Luteolin alleviates methylglyoxal-induced cytotoxicity in osteoblastic MC3T3-E1 cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG), a reactive sugar-derived metabolite, exerts harmful effects by inducing oxidative stress, which aggravates a series of diabetic complications, including osteoporosis. The present study was performed to examine the effects of luteolin, a dietary polyphenolic flavonoid, on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Pretreatment of MC3T3-E1 osteoblastic cells with luteolin prevented MG-induced cell death and production of tumor necrosis factor-alpha, intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation. In addition, luteolin increased the levels of glutathione and nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inhibition of heme oxygenase-1 activity by MG. Pretreatment with luteolin prior to MG exposure reduced MG-induced mitochondrial dysfunction and increased the peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nitric oxide levels, suggesting that luteolin may induce mitochondrial biogenesis. Taken together, these observations indicated that luteolin has potential as a preventive agent against the development of diabetic osteopathy related to MG-induced oxidative stress in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AG:

Aminoguanidine

AGEs:

Advanced glycation end products

DAF-FM DA:

4-Amino-5-methylamino-2′,7′-difluorofluorescein diacetate

H2DCFDA:

2′,7′-Dichlorodihydrofluorescin diacetate

HO-1:

Heme oxygenase-1

MG:

Methylglyoxal

MMP:

Mitochondrial membrane potential

NAO:

10-N-nonyl-Acridine Orange

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

PGC-1α:

Peroxisome proliferator-activated receptor γ co-activator 1α

RAGE:

Receptor for AGE

ROS:

Reactive oxygen species

sRAGE:

Soluble form of receptor for advanced glycation end products

TNF-α:

Tumor necrosis factor-alpha

References

  • Addabbo F, Ratliff B, Park HC, Kuo M, Ungvari Z, Csiszar A, Krasnikov B, Sodhi K, Zhang F, Nasjletti A, Goligorsky MS (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol 174:34–43

    Article  CAS  Google Scholar 

  • Arredondo F, Echeverry C, Abin-Carriquiry JA, Blasina F, Antunez K, Jones DP, Go YM, Liang YL, Dajas F (2010) After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med 49:738–747

    Article  CAS  Google Scholar 

  • Beisswenger P, Ruggiero-Lopez D (2003) Metformin inhibition of glycation processes. Diabetes Metab 29:6S95–6S103

    Article  CAS  Google Scholar 

  • Blatnik M, Frizzell N, Thorpe SR, Baynes JW (2008) Inactivation of glyceraldehyde-3-phosphate dehydrogenase by fumarate in diabetes: formation of S-(2-succinyl)cysteine, a novel chemical modification of protein and possible biomarker of mitochondrial stress. Diabetes 57:41–49

    Article  CAS  Google Scholar 

  • Chartoumpekis DV, Ziros PG, Psyrogiannis AI, Papavassiliou AG, Kyriazopoulou VE, Sykiotis GP, Habeos IG (2011) Nrf2 represses FGF21 during long-term highfat diet-induced obesity in mice. Diabetes 60:2465–2473

    Article  CAS  Google Scholar 

  • Choi EM (2007) Modulatory effects of luteolin on osteoblastic function and inflammatory mediators in osteoblastic MC3T3-E1 cells. Cell Biol Int 31:870–877

    Article  CAS  Google Scholar 

  • Choi EM (2011) Luteolin protects osteoblastic MC3T3-E1 cells from antimycin A-induced cytotoxicity through the improved mitochondrial function and activation of PI3K/Akt/CREB. Toxicol In Vitro 25:1671–1679

    Article  CAS  Google Scholar 

  • Choi IY, Lee SJ, Ju C, Nam W, Kim HC, Ko KH, Kim WK (2000) Protection by a manganese porphyrin of endogenous peroxynitrite-induced death of glial cells via inhibition of mitochondrial transmembrane potential decrease. Glia 31:155–164

    Article  CAS  Google Scholar 

  • Colhoun HM, Betteridge DJ, Durrington P, Hitman G, Neil A, Livingstone S, Charlton-Menys V, Bao W, Demicco DA, Preston GM, Deshmukh H, Tan K, Fuller JH (2011) Total soluble and endogenous secretory receptor for advanced glycation end products as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial. Diabetes 60:2379–2385

    Article  CAS  Google Scholar 

  • Dalal M, Semba RD, Sun K, Crasto C, Varadhan R, Bandinelli S, Fink JC, Guralnik JM, Ferrucci L (2011) Endogenous secretory receptor for advanced glycation end products and chronic kidney disease in the elderly population. Am J Nephrol 33:313–318

    Article  CAS  Google Scholar 

  • Dore S (2005) Unique properties of polyphenol stilbenes in the brain: more than direct antioxidant actions; gene/protein regulatory activity. Neurosignals 14:61–70

    Article  CAS  Google Scholar 

  • Finkel T (2006) Cell biology: a clean energy programme. Nature 444:151–152

    Article  CAS  Google Scholar 

  • Finotti P, Pagetta A, Ashton T (2001) The oxidative mechanism of heparin interferes with radical production by glucose and reduces the degree of glycooxidative modifications on human serum albumin. Eur J Biochem 268:2193–2200

    Article  CAS  Google Scholar 

  • Funakoshi-Tago M, Nakamura K, Tago K, Mashino T, Kasahara T (2011) Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. Int Immunopharmacol 11:1150–1159

    Article  CAS  Google Scholar 

  • Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    Article  CAS  Google Scholar 

  • Hamada Y, Fujii H, Kitazawa R, Yodoi J, Kitazawa S, Fukagawa M (2009) Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocininduced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications. Bone 44:936–941

    Article  CAS  Google Scholar 

  • Hamann C, Kirschner S, Gunther KP, Hofbauer LC (2012) Bone, sweet bone—osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol 8:297–305

    Article  CAS  Google Scholar 

  • Hamann C, Picke AK, Campbell GM, Balyura M, Rauner M, Bernhardt R, Huber G, Morlock MM, Günther KP, Bornstein SR, Glüer CC, Ludwig B, Hofbauer LC (2014) Effects of parathyroid hormone on bone mass, bone strength, and bone regeneration in male rats with type 2 diabetes mellitus. Endocrinology 155:1197–1206

    Article  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  Google Scholar 

  • Jakubowski W, Bartosz G (2000) 2,7-Dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757–760

    Article  CAS  Google Scholar 

  • Karim L, Tang SY, Sroga GE, Vashishth D (2013) Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int 24:2441–2447

    Article  CAS  Google Scholar 

  • Kayath MJ, Tavares EF, Dib SA, Vieira JG (1998) Prospective bone mineral density evaluation in patients with insulin-dependent diabetes mellitus. J Diabet Complications 12:133–139

    Article  CAS  Google Scholar 

  • Kilpadi KL, Eldabaje R, Schmitz JE, Ehler B, Thames TA, Joshi AP, Simmons JW 3rd, Michalek JE, Fajardo RJ (2013) Type 2 diabetes is associated with vertebral fractures in a sample of clinic- and hospital-based latinos. J Immigr Minor Health 16:440–449

    Article  Google Scholar 

  • Kim JW, Lim SC, Lee MY, Lee JW, Oh WK, Kim SK, Kang KW (2010) Inhibition of neointimal formation by trans-resveratrol: role of phosphatidyl inositol 3-kinasedependent Nrf2 activation in heme oxygenase-1 induction. Mol Nutr Food Res 54:1497–1505

    Article  CAS  Google Scholar 

  • Lang Y, Chen D, Li D, Zhu M, Xu T, Zhang T, Qian W, Luo Y (2012) Luteolin inhibited hydrogen peroxide-induced vascular smooth muscle cells proliferation and migration by suppressing the Src and Akt signalling pathways. J Pharm Pharmacol 64:597–603

    Article  CAS  Google Scholar 

  • Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E et al (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24:2533–2545

    Article  CAS  Google Scholar 

  • Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104

    Article  CAS  Google Scholar 

  • Liu YW, Zhu X, Li W, Wang JY, Wei YQ, Yin XX (2012) Ginsenoside Re attenuates diabetesassociated cognitive deficits in rats. Pharmacol Biochem Behav 101:93–98

    Article  CAS  Google Scholar 

  • Mariappan N, Soorappan RN, Haque M, Sriramula S, Francis J (2007) TNF-α-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 293:H2726–H2737

    Article  CAS  Google Scholar 

  • Mariappan N, Elks CM, Fink B, Francis J (2009) TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radic Biol Med 46:462–470

    Article  CAS  Google Scholar 

  • Miniati M, Monti S, Basta G, Cocci F, Fornai E, Bottai M (2011) Soluble receptor for advanced glycation end products in COPD: relationship with emphysema and chronic corpulmonale: a case-control study. Respir Res 12:37

    Article  CAS  Google Scholar 

  • Mukhopadhyay P, Rajesh M, Kashiwaya Y, Haskó G, Pacher P (2007) Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem Biophys Res Commun 358:203–208

    Article  CAS  Google Scholar 

  • Nagaraj RH, Sarkar P, Mally A, Biemel KM, Lederer MO, Padayatti PS (2002) Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys 402:110–119

    Article  CAS  Google Scholar 

  • Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, Fitzgerald KA, Ryter SW, Choi AM (2011) Autophagy proteins regulate innate immune responses by inhibiting the release ofmitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    Article  CAS  Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    Article  CAS  Google Scholar 

  • Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197

    Article  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    Article  CAS  Google Scholar 

  • Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806

    Article  CAS  Google Scholar 

  • Odani H, Shinzato T, Usami J, Matsumoto Y, Brinkmann Frye E, Baynes JW, Maeda K (1998) Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients: evidence for increased oxidative stress in uremia. FEBS Lett 427:381–385

    Article  CAS  Google Scholar 

  • Ojuka EO, Jones TE, Han DH, Chen M, Holloszy JO (2003) Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17:675–681

    Article  CAS  Google Scholar 

  • Patti ME, Corvera S (2010) The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev 31:364–395

    Article  CAS  Google Scholar 

  • Petit JM, Maftah A, Ratinaud MH, Julien R (1992) 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem 209:267–273

    Article  Google Scholar 

  • Peng X, Ma J, Chen F, Wang M (2011) Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct 2:289–301

    Article  CAS  Google Scholar 

  • Pignatelli P, Cangemi R, Celestini A, Carnevale R, Polimeni L, Martini A, Ferro D, Loffredo L, Violi F (2008) Tumour necrosis factor α upregulates platelet CD40 L in patients with heart failure. Cardiovasc Res 78:515–522

    Article  CAS  Google Scholar 

  • Pope SA, Milton R, Heales SJ (2008) Astrocytes protect against copper-catalysed loss of extracellular glutathione. Neurochem Res 33:1410–1418

    Article  CAS  Google Scholar 

  • Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 8:971–982

    Article  CAS  Google Scholar 

  • Raposeiras-Roubin S, Rodino-Janeiro BK, Grigorian-Shamagian L, Moure-Gonzalez M, Seoane-Blanco A, Varela-Roman A, Alvarez E, Gonzalez-Juanatey JR (2010) Soluble receptor of advanced glycation end products levels are related to ischaemic aetiology and extent of coronary disease in chronic heart failure patients, independent of advanced glycation end products levels: new roles for soluble RAGE. Eur J Heart Fail 12:1092–1100

    Article  CAS  Google Scholar 

  • Scapagnini G, Butterfield DA, Colombrita C, Sultana R, Pascale A, Calabrese V (2004) Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 6:811–818

    Article  CAS  Google Scholar 

  • Schroeder P, Pohl C, Calles C, Marks C, Wild S, Krutmann J (2007) Cellular response to infrared radiation involves retrograde mitochondrial signaling. Free Radic Biol Med 43:128–135

    Article  CAS  Google Scholar 

  • Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52:1256–1264

    Article  CAS  Google Scholar 

  • Shao X, Chen H, Zhu Y, Sedighi R, Ho CT, Sang S (2014) Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal. J Agric Food Chem 62:3202–3210

    Article  CAS  Google Scholar 

  • Shi R, Huang Q, Zhu X, Ong YB, Zhao B, Lu J, Ong CN, Shen HM (2007) Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Mol Cancer Ther 6:1338–1347

    Article  CAS  Google Scholar 

  • Suh KS, Choi EM, Rhee SY, Kim YS (2014) Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells. Free Radical Res 48:206–217

    Article  CAS  Google Scholar 

  • Talukdar D, Chaudhuri BS, Ray M, Ray S (2009) Critical evaluation of toxic versus beneficial effects of methylglyoxal. Biochemistry (Mosc) 74:1059–1069

    Article  CAS  Google Scholar 

  • Tang SY, Sharan AD, Vashishth D (2008) Effects of collagen crosslinking on tissue fragility. Clin Biomech (Bristol, Avon) 23:122–123

    Article  Google Scholar 

  • Thomas MC, Baynes JW, Thorpe SR, Cooper ME (2005) The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets 6:453–474

    Article  CAS  Google Scholar 

  • Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, Cortizo AM (2013) Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract 101:177–186

    Article  CAS  Google Scholar 

  • Ungvari ZI, Labinskyy N, Gupte SA, Chander PN, Edwards JG, Csiszar A (2008) Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Physiol Heart Circ Physiol 294:H2121–H2128

    Article  CAS  Google Scholar 

  • Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13:1699–1712

    Article  CAS  Google Scholar 

  • Vitaglione P, Morisco F, Caporaso N, Fogliano V (2004) Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr 44:575–586

    Article  CAS  Google Scholar 

  • Wang Y, Ho CT (2012) Flavour chemistry of methylglyoxal and glyoxal. Chem Soc Rev 41:4140–4149

    Article  CAS  Google Scholar 

  • Wang H, Meng QH, Chang T, Wu L (2006) Fructose-induced peroxynitrite production is mediated by methylglyoxal in vascular smooth muscle cells. Life Sci 79:2448–2454

    Article  CAS  Google Scholar 

  • Webster J, Urban C, Berbaum K, Loske C, Alpar A, Gartner U, de Arriba SG, Arendt T, Munch G (2005) The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotoxic Res 7:95–101

    Article  CAS  Google Scholar 

  • Wu CH, Yen GC (2005) Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J Agric Food Chem 53:3167–3173

    Article  CAS  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  Google Scholar 

  • Wu CH, Huang SM, Lin JA, Yen GC (2011) Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct 2:224–234

    Article  CAS  Google Scholar 

  • Yamagishi S, Matsui T (2010) Soluble form of a receptor for advanced glycation endproducts (sRAGE) as a biomarker. Front Biosci 2:1184–1195

    Article  Google Scholar 

  • Yamaguchi T, Sugimoto T (2011) Bone metabolism and fracture risk in type 2 diabetes mellitus. Endocr J 58:613–624

    Article  CAS  Google Scholar 

  • Zenkov NK, Menshchikova EB, Tkachev VO (2013) Keap1/Nrf2/ARE redoxsensitive signaling system as a pharmacological target. Biochemistry (Mosc) 78:19–36

    Article  CAS  Google Scholar 

  • Zhao Z, Liu J, Shi B, He S, Yao X, Willcox MD (2010) Advanced glycation end product (AGE) modified proteins in tears of diabetic patients. Mol Vis 16:1576–1584

    CAS  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2A10004361) and by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea. (Grant Number: HI14C-2700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Mi Choi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Kwang Sik Suh and Suk Chon have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, K.S., Chon, S. & Choi, E.M. Luteolin alleviates methylglyoxal-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Cytotechnology 68, 2539–2552 (2016). https://doi.org/10.1007/s10616-016-9977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9977-y

Keywords

Navigation