Skip to main content

Advertisement

Log in

Astrocytes Protect Against Copper-Catalysed Loss of Extracellular Glutathione

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutathione (GSH) is one of the major antioxidants in the brain. GSH is secreted by astrocytes and this extracellular GSH is used by neurones to maintain and increase their intracellular GSH levels. For efficient GSH trafficking between astrocytes and neurones, GSH needs to be maintained in the reduced form. In model systems, GSH trafficking has been shown to be essential for neuroprotection against a variety of stress conditions. Previously we and others have shown that GSH and thiols are unstable in cell culture media and are easily oxidised. In the present study it is shown that nanomolar concentrations of copper (II) ions can cause decay of GSH in cell culture media. Increased free or redox active copper has been implicated in a variety of diseases and degradation of extracellular GSH is a possible mechanism by which it exerts its harmful effects. Rat astrocytes, a human astrocytoma cell line and astrocyte-conditioned media, in the absence of cells, are able to retard this copper-catalysed decay of GSH and maintain GSH in its reduced form. The protective effect of astrocytes appears to be a combination of copper removing and antioxidant mechanisms. The importance of these protective mechanisms is discussed with regards to neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GSH:

Glutathione

GSSG:

Oxidised glutathione

ETC:

Electron transport chain

CysGly:

Cysteinyl-glycine

γ-GT:

γ-Glutamyl transferase

ApN:

Aminopeptidase

TBARS:

Thiobarbituric acid reactive substances

SOD:

Superoxide dismutase

FBS:

Fetal bovine serum

LDH:

Lactate dehydrogenase

DTPA:

Diethylene triamine pentaacetic acid

OPA:

Orthophosphoric acid

HPLC:

High performance liquid chromatography

BCS:

Bathocuproine disulphonate

CSF:

Cerebrospinal fluid

References

  1. Winterbourn CC, Metodiewa D (1994) The reaction of superoxide with reduced glutathione. Arch Biochem Biophys 314:284–290

    Article  PubMed  CAS  Google Scholar 

  2. Sjoberg L, Eriksen TE, Revesz L (1982) The reaction of the hydroxyl radical with glutathione in neutral and alkaline aqueous solution. Radiat Res 89:255–263

    Article  PubMed  CAS  Google Scholar 

  3. Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Rev 25:335–358

    Article  PubMed  CAS  Google Scholar 

  4. Sian J, Dexter DT, Lees AJ et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  PubMed  CAS  Google Scholar 

  5. Sofic E, Lange KW, Jellinger K et al (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Article  PubMed  CAS  Google Scholar 

  6. Heales SJ, Davies SE, Bates TE et al (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20:31–38

    Article  PubMed  CAS  Google Scholar 

  7. Jain A, Martensson J, Stole E et al (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA 88:1913–1917

    Article  PubMed  CAS  Google Scholar 

  8. Bolanos JP, Heales SJ, Peuchen S et al (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic Biol Med 21:995–1001

    Article  PubMed  CAS  Google Scholar 

  9. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569

    PubMed  CAS  Google Scholar 

  10. Gegg ME, Clark JB, Heales SJ (2005) Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Res 1036:1–6

    Article  PubMed  CAS  Google Scholar 

  11. Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676

    Article  PubMed  CAS  Google Scholar 

  12. Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66:1876–1881

    Article  PubMed  CAS  Google Scholar 

  13. Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326

    Article  PubMed  CAS  Google Scholar 

  14. Stewart VC, Stone R, Gegg ME et al (2002) Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J Neurochem 83:984–991

    Article  PubMed  CAS  Google Scholar 

  15. Dringen R, Kranich O, Hamprecht B (1997) The gamma-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem Res 22:727–733

    Article  PubMed  CAS  Google Scholar 

  16. Dringen R, Gutterer JM, Gros C et al (2001) Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66:1003–1008

    Article  PubMed  CAS  Google Scholar 

  17. Tate SS, Meister A (1974) Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem 249:7593–7602

    PubMed  CAS  Google Scholar 

  18. McIntyre TM, Curthoys NP (1979) Comparison of the hydrolytic and transfer activities of rat renal gamma-glutamyltranspeptidase. J Biol Chem 254:6499–6504

    PubMed  CAS  Google Scholar 

  19. Evans PJ, Tredger JM, Dunne JB et al (1996) Catalytic metal ions and the loss of reduced glutathione from University of Wisconsin preservation solution. Transplantation 62:1046–1049

    Article  PubMed  CAS  Google Scholar 

  20. Hua LL, Halliwell B (2001) Oxidation and generation of hydrogen peroxide by thiol compounds in commonly used cell culture media. Biochem Biophys Res Commun 286:991–994

    Article  CAS  Google Scholar 

  21. Kachur AV, Koch CJ, Biaglow JE (1998) Mechanism of copper-catalyzed oxidation of glutathione. Free Radic Res 28:259–269

    Article  PubMed  CAS  Google Scholar 

  22. Wang XF, Cynader MS (2001) Pyruvate released by astrocytes protects neurons from copper-catalyzed cysteine neurotoxicity. J Neurosci 21:3322–3331

    PubMed  CAS  Google Scholar 

  23. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    PubMed  CAS  Google Scholar 

  24. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  25. DiDonato M, Sarkar B (1997) Copper transport and its alterations in Menkes and Wilson diseases. Biochim Biophys Acta 1360:3–16

    PubMed  CAS  Google Scholar 

  26. Nagasaka H, Inoue I, Inui A et al (2006) Relationship between oxidative stress and antioxidant systems in the liver of patients with Wilson disease: hepatic manifestation in Wilson disease as a consequence of augmented oxidative stress. Pediatr Res 60:472–477

    Article  PubMed  CAS  Google Scholar 

  27. Lafon-Cazal M, Adjali O, Galeotti N et al (2003) Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J Biol Chem 278:24438–24448

    Article  PubMed  CAS  Google Scholar 

  28. Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245:243–250

    PubMed  CAS  Google Scholar 

  29. White AR, Cappai R (2003) Neurotoxicity from glutathione depletion is dependent on extracellular trace copper. J Neurosci Res 71:889–897

    Article  PubMed  CAS  Google Scholar 

  30. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2:223–228

    Article  CAS  Google Scholar 

  31. Riederer P, Sofic E, Rausch WD et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  32. Rapisarda VA, Volentini SI, Farias RN et al (2002) Quenching of bathocuproine disulfonate fluorescence by Cu(I) as a basis for copper quantification. Anal Biochem 307:105–109

    Article  PubMed  CAS  Google Scholar 

  33. Wee LM, Long LH, Whiteman M et al (2003) Factors affecting the ascorbate- and phenolic-dependent generation of hydrogen peroxide in Dulbecco’s Modified Eagles Medium. Free Radic Res 37:1123–1130

    Article  PubMed  CAS  Google Scholar 

  34. Wilson JX, Peters CE, Sitar SM et al (2000) Glutamate stimulates ascorbate transport by astrocytes. Brain Res 858:61–66

    Article  PubMed  CAS  Google Scholar 

  35. Lonnrot K, Metsa-Ketela T, Molnar G et al (1996) The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity. Free Radic Biol Med 21:211–217

    Article  PubMed  CAS  Google Scholar 

  36. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  PubMed  CAS  Google Scholar 

  37. Kapaki E, Zournas C, Kanias G et al (1997) Essential trace element alterations in amyotrophic lateral sclerosis. J Neurol Sci 147:171–175

    Article  PubMed  CAS  Google Scholar 

  38. Jimenez-Jimenez FJ, Molina JA, Aguilar MV et al (1998) Cerebrospinal fluid levels of transition metals in patients with Parkinson’s disease. J Neural Transm 105:497–505

    Article  PubMed  CAS  Google Scholar 

  39. Stuerenburg HJ (2000) CSF copper concentrations, blood-brain barrier function, and coeruloplasmin synthesis during the treatment of Wilson’s disease. J Neural Transm 107:321–329

    Article  PubMed  CAS  Google Scholar 

  40. Gutteridge JM (1984) Copper-phenanthroline-induced site-specific oxygen-radical damage to DNA. Detection of loosely bound trace copper in biological fluids. Biochem J 218:983–985

    PubMed  CAS  Google Scholar 

  41. Winyard PG, Pall H, Lunec J et al (1987) Non-caeruloplasmin-bound copper (‘phenanthroline copper’) is not detectable in fresh serum or synovial fluid from patients with rheumatoid arthritis. Biochem J 247:245–246

    PubMed  CAS  Google Scholar 

  42. Gaeta A, Hider RC (2005) The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol 146:1041–1059

    Article  PubMed  CAS  Google Scholar 

  43. Pall HS, Williams AC, Blake DR et al (1987) Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet 2:238–241

    Article  PubMed  CAS  Google Scholar 

  44. Basun H, Forssell LG, Wetterberg L et al (1991) Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Park Dis Dement Sect 3:231–258

    PubMed  CAS  Google Scholar 

  45. Brown DR (2004) Role of the prion protein in copper turnover in astrocytes. Neurobiol Dis 15:534–543

    Article  PubMed  CAS  Google Scholar 

  46. Brown DR, Qin K, Herms JW et al (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687

    Article  PubMed  CAS  Google Scholar 

  47. Brown DR, Kozlowski H (2004) Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans 1907–1917

  48. Borchardt T, Camakaris J, Cappai R et al (1999) Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem J 344(Pt 2):461–467

    Article  PubMed  CAS  Google Scholar 

  49. Terada K, Kawarada Y, Miura N et al (1995) Copper incorporation into ceruloplasmin in rat livers. Biochim Biophys Acta 1270:58–62

    PubMed  Google Scholar 

  50. Bunton CA (1949) Oxidation of -diketones and -keto-acids by hydrogen peroxide. Nature 163:444

    Article  CAS  Google Scholar 

  51. Flohe L, Budde H, Hofmann B (2003) Peroxiredoxins in antioxidant defense and redox regulation. Biofactors 19:3–10

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hospital Savings Association and the Brain Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. S. Pope.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pope, S.A.S., Milton, R. & Heales, S.J.R. Astrocytes Protect Against Copper-Catalysed Loss of Extracellular Glutathione. Neurochem Res 33, 1410–1418 (2008). https://doi.org/10.1007/s11064-008-9602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9602-3

Keywords

Navigation