Skip to main content

Advertisement

Log in

Parnassius apollo nevadensis: identification of recent population structure and source–sink dynamics

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Population persistence depends in many cases on gene flow between local populations. Parnassius apollo nevadensis is an endemic subspecies of Apollo butterfly in the Sierra Nevada (southern Spain), whose populations are distributed in discrete patches at altitudes between 1850 and 2700 m. In this paper, we use 13 microsatellite loci to examine the genetic structure of this P. apollo subspecies. We revealed both a strong pattern of isolation by distance (which was stronger when calculated with realistic travel distances that accounted for topography) and source–sink dynamics. The observed population genetic structure is consistent with strongly asymmetrical gene flow, leading to constant directional migration and differential connectivity among the populations. The apparently contradictory results from the clustering algorithms (Structure and Geneland) are also consistent with a recent (<100 ya) reduction in the distribution range. The results point to global warming as a possible cause of this reduction, as in other populations of this species. We identify some natural and anthropogenic barriers to gene flow that may be the cause of the recent population structure and source–sink dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apodaca J, Rissler L, Godwin J (2012) Population structure and gene flow in a heavily disturbed habitat: implications for the management of the imperilled Red Hills salamander (Phaeognathus hubrichti). Conserv Genet 13:913–923. doi:10.1007/s10592-012-0340-3

    Article  Google Scholar 

  • Ashton S, Gutierrez D, Wilson RJ (2009) Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecol Entomol 34:437–446

    Article  Google Scholar 

  • Baillie J, Groombridge B, Gärdenfors U, Stattersfield A (1996) 1996 IUCN red list of threatened animals. IUCN, Switzerland

    Google Scholar 

  • Barea-Azcón JM, Ballesteros-Duperón E, Moreno-Lampreave D (2008) Libro rojo de los invertebrados de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, Granada

    Google Scholar 

  • Buchalski MR, Navarro AY, Boyce WM, Winston Vickers T, Tobler MW, Nordstrom LA, García JA, Gille DA, Penedo MCT, Ryder OA, Ernest HB (2015) Genetic population structure of Peninsular bighorn sheep (Ovis canadensis nelsoni) indicates substantial gene flow across US–Mexico border. Biol Conserv 184:218–228

    Article  Google Scholar 

  • Collins NM, Morris MG (1985) Threatened swallowtail butterflies of the world: the IUCN red data book. UICN, Cambridge

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679. doi:10.1111/j.1365-294X.2006.02861.x

    Article  CAS  PubMed  Google Scholar 

  • Descimon H (1995) La conservation des Parnassius en France: aspects zoogéographiques, écologiques, démographiques et génétiques. OPIE 1:1–54

    Google Scholar 

  • Descimon H, Bachelard P, Boitier E, Pierrat V (2006) Decline and extinction of Parnassius apollo populations in France—continued. In: Kühn E, Feldmann R, Thomas J, Settele J (eds) Studies on the ecology and conservation of butterflies in Europe (EBIE). Persoft, Sofia, Bulgaria, pp 114–115

    Google Scholar 

  • Descombes P, Pradervand JN, Golay J, Guisan A, Pellissier L (2015) Simulated shifts in trophic niche breadth modulate range loss of alpine butterflies under climate change. Ecography 39:796–804. doi:10.1111/ecog.01557

    Article  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Eisner C (1976) Parnassiana nova XLIX die arten un unterarten des Parnassiidae (Lepidoptera) (Zweiter Teil). Zool Verhandelingen 146:99–266

    Google Scholar 

  • England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv Genet 7:303–308

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fauvelot C, Cleary DF, Menken SB (2006) Short-term impact of 1997/1998 ENSO-induced disturbance on abundance and genetic variation in a tropical butterfly. J Hered 97:367–380

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16:265–280. doi:10.1111/j.1466-8238.2007.00287.x

    Article  Google Scholar 

  • Forister ML, McCall AC, Sanders NJ, Fordyce JA, Thorne JH, O’Brien J, Waetjen DP, Shapiro AM (2010) Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc Natl Acad Sci 107:2088–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frantz A, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505

    Article  Google Scholar 

  • Fred MS, Brommer JE (2005) The decline and current distribution of Parnassius apollo (Linnaeus) in Finland: the role of Cd. Ann Zool Fenn 42:69–79

    Google Scholar 

  • Fred MS, Brommer JE (2015) Translocation of the endangered apollo butterfly Parnassius apollo in southern Finland. Conserv Evid 12:8–13

    Google Scholar 

  • Fred MS, O’Hara RB, Brommer JE (2006) Consequences of the spatial configuration of resources for the distribution and dynamics of the endangered Parnassius apollo butterfly. Biol Conserv 130:183–192

    Article  Google Scholar 

  • Gauffre B, Estoup A, Bretagnolle V, Cosson J (2008) Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol 17:4619–4629

    Article  CAS  PubMed  Google Scholar 

  • Gomariz Cerezo G (1993) Aportación al conocimiento de la distribución y abundancia de Parnassius apollo (Linnaeus, 1758) en Sierra Nevada (España meridional) (Lepidoptera: Papilionidae). SHILAP Revta Lepid 21:71–79

    Google Scholar 

  • Gómez-Bustillo M, Fernández-Rubio E (eds) (1973) El Parnasius apollo (L.): (Lep. Papilionidae) en España: bionomía y distribución geográfica. Instituto Nacional para la Conservación de la Naturaleza, Ministerio de Agricultura, Madrid

    Google Scholar 

  • González-Megías A, Menéndez R, Tinaut A (2015) Cambio en los rangos altitudinales de insectos en Sierra Nevada: evidencias del cambio climático. In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R (eds) La huella del cambio global en Sierra Nevada: Retos para la conservación. Consejería de Medio Ambiente y Ordenación del Territorio. Junta de Andalucía, Granada, pp 118–120

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Guedj B, Guillot G (2011) Estimating the location and shape of hybrid zones. Mol Ecol Res 11:1119–1123

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715. doi:10.1111/j.1471-8286.2005.01031.x

    Article  CAS  Google Scholar 

  • Gutiérrez-Illán J, Gutiérrez D, Díez SB, Wilson RJ (2012) Elevational trends in butterfly phenology: implications for species responses to climate change. Ecol Entomol 37:134–144. doi:10.1111/j.1365-2311.2012.01345.x

    Article  Google Scholar 

  • Habel J, Zachos F, Finger A, Meyer M, Louy D, Assmann T, Schmitt T (2009) Unprecedented long-term genetic monomorphism in an endangered relict butterfly species. Conserv Genet 10:1659–1665. doi:10.1007/s10592-008-9744-5

    Article  Google Scholar 

  • Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hilty JA, Lidicker WZ Jr, Merenlender A (2006) Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press, San Diego

    Google Scholar 

  • Howe RW, Davis GJ, Mosca V (1991) The demographic significance of ‘sink’populations. Biol Conserv 57:239–255

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. http://ibdws.sdsu.edu/

  • Jombart T (2014) A tutorial for the spatial Analysis of Principal Components (sPCA) using adegenet 1.4–1. https://github.com/thibautjombart/adegenet/wiki/Tutorials

  • Jombart T, Ahmed I (2011) adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. doi:10.1093/bioinformatics/btr521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Dufour A, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi:10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  • Kati V, Zografou K, Tzirkalli E, Chitos T, Willemse L (2012) Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: the roles of disturbance and environmental factors. J Insect Conserv 16:807–818

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  CAS  PubMed  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2002) Isolation of novel microsatellite loci in the Rocky Mountain apollo butterfly, Parnassius smintheus. Hereditas 136:247–250

    Article  PubMed  Google Scholar 

  • Leidner AK, Haddad NM (2010) Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Genet 11:2311–2320

    Article  Google Scholar 

  • Łozowski B, Kędziorski A, Nakonieczny M, Łaszczyca P (2014) Parnassius apollo last-instar larvae development prediction by analysis of weather condition as a tool in the species’ conservation. CR Biol 337:325–331

    Article  Google Scholar 

  • Lundy IJ, Possingham HP (1998) Fixation probability of an allele in a subdivided population with asymmetric migration. Genet Res 71:237–245

    Article  Google Scholar 

  • Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518

    Article  Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meglécz E, Pecsenye K, Varga Z, Solignac M (1998) Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (Lepidoptera) populations. Hereditas 128:95–103. doi:10.1111/j.1601-5223.1998.00095.x

    Article  Google Scholar 

  • Milko LV, Haddad NM, Lance SL (2012) Dispersal via stream corridors structures populations of the endangered St. Francis’ satyr butterfly (Neonympha mitchellii francisci). J Insect Conserv 16:263–273

    Article  Google Scholar 

  • Ministerio de Agricultura Alimentación y Medio Ambiente (2013) Conservación de especies amenazadas: Invertebrados. Gobierno de España. http://www.magrama.gob.es/es/biodiversidad/temas/conservacion-de-especies-amenazadas/invertebrados/introduccion2010-10-28_20.57.55.2233.aspx

  • Mira Ó, Martínez JG, Dawson DA, Tinaut A, Sánchez-Prieto C (2014) Twenty new microsatellite loci for population structure and parentage studies of Parnassius apollo nevadensis (Lepidoptera; Papilionidae). J Insect Conserv 18:771–779. doi:10.1007/s10841-014-9683-z

    Article  Google Scholar 

  • Morrissey MB, de Kerckhove DT (2009) The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. Am Nat 174:875–889

    Article  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls JA, Double MC, Rowell DM, Magrath RD (2000) The evolution of cooperative and pair breeding in thornbills Acanthiza (Pardalotidae). J Avian Biol 31:165–176. doi:10.1034/j.1600-048X.2000.310208.x

    Article  Google Scholar 

  • Nogués-Bravo D, Araújo MB, Errea M, Martinez-Rica J (2007) Exposure of global mountain systems to climate warming during the 21st Century. Global Environ Change 17:420–428

    Article  Google Scholar 

  • Nyafwono M, Valtonen A, Nyeko P, Roininen H (2014) Butterfly community composition across a successional gradient in a human-disturbed afro-tropical rain forest. Biotropica 46:210–218

    Article  Google Scholar 

  • Olivares FJ, Barea-Azcón JM, Pérez-López FJ, Tinaut A, Henares I (2011) Las mariposas diurnas de sierra nevada. Consejería de Medio Ambiente, Junta de Andalucía, Granada

    Google Scholar 

  • Oliver TH, Marshall HH, Morecroft MD, Brereton T, Prudhomme C, Huntingford C (2015) Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat Clim Change 5:941–945

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petenian F, Meglecz E, Genson G, Rasplus JY, Faure E (2005) Isolation and characterization of polymorphic microsatellites in Parnassius apollo and Euphydryas aurinia (Lepidoptera). Mol Ecol Notes 5:243–245

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503. doi:10.1093/jhered/90.4.502

    Article  Google Scholar 

  • Porter AH (1999) Refugees from lost habitat and reorganization of genetic population structure. Conserv Biol 13:850–859. doi:10.2307/2641699

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puechmaille SJ (2016) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: sub-sampling and new estimators alleviate the problem. Mol Ecol Res. doi:10.1111/1755-0998.12512

    Google Scholar 

  • QGIS Development Team (2015) QGIS geographic information system. Open source geospatial foundation project. http://www.qgis.org/

  • Radchuk V, Turlure C, Schtickzelle N (2013) Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J Anim Ecol 82:275–285

    Article  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225

    Article  Google Scholar 

  • Richardson DS, Jury FL, Blaakmeer K, Komdeur J, Burke T (2001) Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Mol Ecol 10:2263–2273. doi:10.1046/j.0962-1083.2001.01355.x

    Article  CAS  PubMed  Google Scholar 

  • Ronca S (2005) Distribution, habitat and decline in central Spain of Parnassius apollo, a rare mountain butterfly. University of Leeds, Leeds

    Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Global Change Biol 6:407–416. doi:10.1046/j.1365-2486.2000.00322.x

    Article  Google Scholar 

  • Saarinen EV, Daniels JC, Maruniak JE (2014) Local extinction event despite high levels of gene flow and genetic diversity in the federally-endangered Miami blue butterfly. Conserv Genet 15:811–821

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Sarhan A (2006) Isolation and characterization of five microsatellite loci in the Glanville fritillary butterfly (Melitaea cinxia). Mol Ecol Notes 6:163–164

    Article  CAS  Google Scholar 

  • Segelbacher G, Cushman SA, Epperson BK, Fortin MJ, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385. doi:10.1007/s10592-009-0044-5

    Article  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T (2008) Climatic risk Atlas of European butterflies. Pensoft, Sofia, Moskow

    Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evol Int J Org Evol 39:53–65

    Article  Google Scholar 

  • Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by ringlet butterflies (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10:1359–1365

    Article  Google Scholar 

  • Swindell WR, Bouzat JL (2005) Modeling the adaptive potential of isolated populations: experimental simulations using Drosophila. Evol Int J Org Evol 59:2159–2169

    Article  CAS  Google Scholar 

  • Takami Y, Koshio C, Ishii M, Fujii H, Hidaka T, Shimizu I (2004) Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Mol Ecol 13:245–258

    Article  PubMed  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) Computer Programs: onesamp: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Res 8:299–301

    Article  Google Scholar 

  • Todisco V, Gratton P, Cesaroni D, Sbordoni V (2010) Phylogeography of Parnassius apollo: hints on taxonomy and conservation of a vulnerable glacial butterfly invader. Biol J Linn Soc 101:169–183. doi:10.1111/j.1095-8312.2010.01476.x

    Article  Google Scholar 

  • van Swaay CAM, Warren M eds (1999) Red Data Book of European butterflies (Rhopalocera). Council of Europe Publishing, Strasbourg

    Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira ML, Šašić M, Settele J, Verovnik R, Verstrael T, Warren M et al (eds) (2010) European red list of butterflies. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268. doi:10.1007/s10841-010-9342-y

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  PubMed  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biol 13:1873–1887

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-Statistics with special regard to systems of mating. Evol Int J Org Evol 19:395–420. doi:10.2307/2406450

    Article  Google Scholar 

Download references

Acknowledgements

We thank the regional government of Andalucía (Junta de Andalucía) for sampling permission and for facilitating sample collection, and also for the financial support that mainly came from the Proyectos de Excelencia scheme (P08-RNM-03820). We would like to thank the Managers of the National Park of Sierra Nevada for granting permission to carry out the work. OM and CBSP were supported by postgraduate and postdoctoral grants provided the Andalucía government. DAD is supported by the Natural Environment Research Council, UK. We also thank Steeves Buckland for his advice regarding analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar Mira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 158 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mira, Ó., Sánchez-Prieto, C.B., Dawson, D.A. et al. Parnassius apollo nevadensis: identification of recent population structure and source–sink dynamics. Conserv Genet 18, 837–851 (2017). https://doi.org/10.1007/s10592-017-0931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0931-0

Keywords

Navigation