Skip to main content

Advertisement

Log in

Dispersal via stream corridors structures populations of the endangered St. Francis’ satyr butterfly (Neonympha mitchellii francisci)

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Habitat fragmentation may reduce gene flow and population viability of rare species. We tested whether riparian corridors enhanced gene flow and if human habitat modification between riparian corridors subsequently reduced dispersal and gene flow of a wetland butterfly, the US federally endangered St. Francis’ satyr butterfly (Neonympha mitchellii francisci). We surveyed nine populations throughout the taxon’s range using five polymorphic microsatellite loci. We found that genetic diversity of N. m. francisci was relatively high despite its restricted distribution, and that there is little evidence of population bottlenecks or extensive inbreeding within populations. We found substantial gene flow and detectable first generation migration, suggesting that N. m. francisci is unlikely to be currently endangered by genetic factors. Pairwise population differentiation and clustering indicate some structuring between populations on different drainages and suggest that dispersal probably occurs mainly via a stepping stone from the closest riparian corridors. However, genetic differentiation between geographically close populations suggests that isolation by distance is not solely responsible for population structure, and that management actions should be targeted at maintaining connectivity of riparian and upland habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Bartel RA, Haddad NM, Wright JP (2010) Ecosystem engineers maintain a rare species of butterfly and increase plant diversity. Oikos 119:883–890

    Article  Google Scholar 

  • Bouzat JL, Johnson JA, Toepfer JE, Simpson SA, Esker TL, Westemeier RL (2008) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet 10:191–201

    Article  Google Scholar 

  • Chaline N, Ratneiks FLW, Raine NE, Badcock NS, Burke T (2004) Non-lethal sampling of honey bee (Apis mellifera) DNA using wing tips. Apidologies 35:11–18

    Google Scholar 

  • Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    Google Scholar 

  • DeWoody AJ, Schupp J, Kenefic L (2004) Universal method for producing ROX-labeled size standards suitable for automated genotyping. BioTechniques 37:348–350

    PubMed  CAS  Google Scholar 

  • DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Frimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci 91:3166–3170

    Article  CAS  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  PubMed  CAS  Google Scholar 

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brahares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetic data analysis. Evol Bioinf 1:47–50 Online

    CAS  Google Scholar 

  • Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol 8:92–94

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Flanagan SP, Wilson WH, Jones KL, Lance SL (2010) Development and characterization of twelve polymorphic microsatellite loci in the Bog Copper, Lycaena epixanthe. Conserv Genet Resour. doi:10.1007/s12686-010-9206-5

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Methods Enzymol 395:202–222

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3.2. Available from http://www2.unil.ch/popgen/softwares/fstat.htm. [updated from Goudet (1995)]

  • Grant EH, Nichols JD, Lowe WH, Fagan WF (2010) Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc Natl Acad Sci USA 107:6936–6940

    Article  CAS  Google Scholar 

  • Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622

    Article  Google Scholar 

  • Haddad NM, Baum KA (1999) An experimental test of corridor effects on butterfly densities. Ecol Appl 9:623–633

    Article  Google Scholar 

  • Haddad NM, Tewksbury JJ (2006) Impacts of corridors on populations and communities. In: Crooks KR, Sanjayan MA (eds) Connectivity conservation. Cambridge University Press, Cambridge, pp 390–415

    Chapter  Google Scholar 

  • Haddad NM, Kuefler D, Hudgens B (2003) Evaluating population viability, and potential restoration of the St. Francis’ Satyr butterfly. Report to the Endangered Species Branch, Ft. Bragg, NC

  • Haddad NM, Hudgens B, Damiani C, Gross K, Kuefler D, Pollock K (2008a) Determining optimal monitoring for rare butterfly populations. Conserv Biol 22:929–940

    Article  PubMed  Google Scholar 

  • Haddad N, Vogel L, Wilson J, Bartel R, Hudgens B, Mortell Q (2008b) Research for the conservation and restoration of an endangered butterfly, the St. Francis Satyr. Report to Ft. Bragg Endangered Species Branch Ft. Bragg, NC

  • Hale ML, Lurz PW, Shirley MDF, Rushton S, Fuller RM, Wolff K (2001) Impact of landscape management on the genetic structure of red squirrel populations. Science 293:2246–2248

    Article  PubMed  CAS  Google Scholar 

  • Hall SP (1993) A rangewide status survey of Saint Francis satyr, (Lepidoptera: Nymphalidae). Report to the U.S. Fish and Wildlife Service, Region 6 Endangered Species Office, Asheville, NC

  • Hall SP, Haddad NM (2005) Rearing studies of larval Neonympha mictchellii francisci and N. areolata. Report to the Endangered Species Branch, Ft. Bragg, NC

  • Hall SP, Hoffman EL (1994) Supplement to the rangewide status survey of Saint Francis’ satyr, Neonympha mitchellii francisci, (Lepidoptera: Nymphalidae); 1993 field season. Report to the U.S. Fish and Wildlife Service, Region 6 Endangered Species Office, Asheville, NC

  • Hamm CA, Aggarwal D, Landis DA (2010) Evaluating the impact of non-lethal DNA sampling on two butterflies, Vanessa cardui and Satyrodes eurydice. J Insect Conserv 14:11–18

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:4149

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Henningsen, JP, Lance, SL, Jones KL, Hagen C, Laurila J, Cole RA, Perez KE (2010) Development and characterization of 17 polymorphic loci in the faucet snail, Bithynia tentaculata (Gatropoda: Caenogastropoda: Bithyniidae). Conserv Genet Resour. doi:10.1007/s12686-010-9255-9

  • Hilty J, Lidicker WZ, Merenlender A (2006) Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press, Washington, DC

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Google Scholar 

  • Jacobsson M, Rosenburg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilonidae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Keyghobadi N, Unger KP, Weintraub JD, Fonseca DM (2006) Remnant populations of the regal fritillary (Speyeria idalia) in Pennsylvania: local genetic structure in a high gene flow species. Conserv Genet 7:309–313

    Article  Google Scholar 

  • Kuefler D, Haddad NM, Hall S, Hudgens B, Bartel B, Hoffman E (2008) Distribution, population structure, and habitat use of the endangered St. Francis’ satyr butterfly, Neonympha mitchellii francisci. Am Mid Nat 159:298–320

    Article  Google Scholar 

  • Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91:944–950

    Article  PubMed  Google Scholar 

  • Lance SL, Light JE, Jones KL, Hagen C, Hafner JC (2010) Isolation and characterization of 17 polymorphic microsatellite loci in the kangaroo mouse, genus Microdipodops (Rodentia: Heteromyidae). Conserv Genet Resour. doi:10.1007/s12686-010-9195-4

  • Lessig H, Wilson J, Hudgens B, Haddad N (2010) Research for the conservation and restoration of an endangered butterfly, the St. Francis’ satyr. Report to the Endangered Species Branch, Ft. Bragg NC

  • Lushai G, Fjellsted W, Marcovitch O (2000) Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biol Conserv 94:43–50

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mech SG, Hallett JG (2001) Evaluating the effectiveness of corridors: a genetic approach. Conserv Biol 15(2):467–474

    Article  Google Scholar 

  • Meglecz E et al (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • New TR (1991) Butterfly conservation. Oxford University Press, Oxford

    Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  PubMed  CAS  Google Scholar 

  • Peterson MA, Denno RF (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am Nat 152:428–446

    Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Saastamoinen M, Hanski I (2008) Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly. Am Nat 171:701–712

    Article  PubMed  Google Scholar 

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65

    Article  Google Scholar 

  • Stevens VM, Verkenne C, Vandenwoestijne S, Wesselingh RA, Baguette M (2006) Gene flow and functional connectivity in the natterjack toad. Mol Ecol 15:2333–2344

    Article  PubMed  CAS  Google Scholar 

  • Storfer A (1999) Gene flow and endangered species translocations: a topic revisited. Biol Conserv 87:173–180

    Article  Google Scholar 

  • Sutcliffe OL, Thomas CD (1996) Open corridors appear to facilitate dispersal by ringlet butterflies (Aphantopus hyperantus) between woodland clearings. Conserv Biol 10:1359–1365

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615

    Article  Google Scholar 

  • Wilkins JF, Wakeley J (2002) The coalescent in a continuous, finite, linear populations. Genetics 161:873–888

    PubMed  Google Scholar 

  • Wright S (1951) The genetic structure of populations. Ann Eugen 15:323–354

    Google Scholar 

  • Zhang D (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends Ecol Evol 19:507–509

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from Ft. Bragg Endangered Species Branch, Department of Defense, Department of the Army, MIPR# 8MUSGP3485. We thank Erich Hoffman of the Department of Public Works at Fort Bragg, DOD, Department of the Army and Brian Ball of the Endangered Species Branch at Fort Bragg, DOD, Department of the Army for their support. We are also grateful to Steve Hall of the North Carolina Natural Heritage Program for providing guidance, expertise, and DNA specimens at the outset of this project. We also wish to thank Heather Lessig for field assistance and Johnny Wilson for invaluable assistance with creating Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura V. Milko.

Appendix

Appendix

See Table 4.

Table 4 Details for five polymorphic microsatellite loci developed for Neonympha mitchellii francisci

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milko, L.V., Haddad, N.M. & Lance, S.L. Dispersal via stream corridors structures populations of the endangered St. Francis’ satyr butterfly (Neonympha mitchellii francisci). J Insect Conserv 16, 263–273 (2012). https://doi.org/10.1007/s10841-011-9413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-011-9413-8

Keywords

Navigation