Skip to main content

Advertisement

Log in

Natural, not urban, barriers define population structure for a coastal endemic butterfly

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat loss and fragmentation are the major causes of biodiversity loss, and, increasingly, habitat is fragmented by urbanization. Yet, the degree to which urbanization creates barriers to animal dispersal remains poorly understood. We used population genetic techniques to determine whether urbanization and/or natural landscape features are dispersal barriers to a butterfly, Atrytonopsis new species 1, throughout its range on coastal sand dunes that are increasingly threatened by development. Using AFLP markers that produced 89 polymorphic loci, we found significant population structure across the range of Atrytonopsis sp1. We found no indication that existing levels of urbanization were barriers to Atrytonopsis sp1 dispersal. Rather, two natural barriers, an ocean inlet and maritime forest, explained the genetic structure. Even in areas with long histories of urbanization, we found no significant isolation-by-distance relationship, and there was very low genetic differentiation between sampling locations. Consequently, conservation strategies for Atrytonopsis sp1, and potentially for other mobile insects that use open-structured habitats, should not focus explicitly on habitat corridors through urban areas, but rather should seek to preserve and restore as much habitat as possible across the butterfly’s range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ (2000) Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Appl 10:230–1248

    Article  Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758

    Article  CAS  PubMed  Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Article  Google Scholar 

  • Connor EF, Hafernik J, Levy J, Moore VL, Rickman JK (2002) Insect conservation in an urban biodiversity hotspot: the San Francisco Bay area. J Insect Conserv 6:247–259

    Article  Google Scholar 

  • Crossett KM, Culliton TJ, Wiley PC, Goodspeed TR (2004) Population trends along the coastal United States: 1980–2008. NOAA, Silver Spring

    Google Scholar 

  • Culley TM, Sbita SJ, Wick A (2007) Population genetic effects of urban habitat fragmentation in the perennial herb Viola pubescens (Violaceae) using ISSR markers. Ann Bot 100:91–100

    Article  PubMed  Google Scholar 

  • Daily GC, Ehrlich PR, Sanchez-Azofeifa GA (2001) Countryside biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. Ecol Appl 11:1–13

    Article  Google Scholar 

  • Daily GC, Ceballos G, Pacheco J, Suzan G, Sanchez-Azofeifa A (2003) Countryside biogeography of Neotropical mammals: conservation opportunities in agricultural landscapes of Costa Rica. Conserv Biol 17:1814–1826

    Article  Google Scholar 

  • DeSalle R, Amato G (2004) The expansion of conservation genetics. Nat Rev Genet 5:702–712

    Article  CAS  PubMed  Google Scholar 

  • Desender K, Small E, Gaublomme E, Verdyck P (2005) Rural-urban gradients and the population genetic structure of woodland ground beetles. Conserv Genet 6:51–62

    Article  Google Scholar 

  • Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 109:1030–1036

    Article  Google Scholar 

  • Ehrenfeld JG (1990) Dynamics and processes of barrier island vegetation. Rev Aquat Sci 2:437–480

    Google Scholar 

  • Ehrich D (2006) Aflpdat: a collection of r functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Epps CW, Palsboll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Faeth SH, Kane TC (1978) Urban biogeography—city parks as islands for Diptera and Coleoptera. Oecologia 32:127–133

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  Google Scholar 

  • Fisher JJ (1962) Geomorphic expression of former inlets along the outer banks of North Carolina. Ph.D. thesis, University of North Carolina—Chapel Hill

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Haddad NM (1999) Corridor use predicted from behaviors at habitat boundaries. Am Nat 153:215–227

    Article  Google Scholar 

  • Hall S (2004) Status survey for Atrytonopsis new species 1 in North Carolina. Report to US Fish and Wildlife Service, Raleigh, NC

  • Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, New York

    Google Scholar 

  • Hitchings SP, Beebee TJC (1997) Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity 79:117–127

    Article  PubMed  Google Scholar 

  • Holderegger R, Wagner HH (2006) A brief guide to landscape genetics. Landsc Ecol 21:793–796

    Article  Google Scholar 

  • Horner-Devine MC, Daily GC, Ehrlich PR, Boggs CL (2003) Countryside biogeography of tropical butterflies. Conserv Biol 17:168–177

    Article  Google Scholar 

  • Hubisz MA, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  Google Scholar 

  • Keller I, Largiadèr CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc Roy Soc B-Biol Sci 270:417–473

    Article  CAS  Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zoolog 85:1049–1064

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909

    Article  CAS  PubMed  Google Scholar 

  • Koh LP, Sodhi NS (2004) Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecol Appl 14:1695–1708

    Article  Google Scholar 

  • Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N (2010) The conflicting role of matrix habitats as conduits and barriers for dispersal. Ecology 91:944–950

    Article  PubMed  Google Scholar 

  • Leidner AK, Haddad NM (2006) Behavior of a rare butterfly in natural and urbanized areas: implications for dune conservation management. Report to North Carolina Sea Grant, Raleigh, NC

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis, and application. Blackwell Publishing, Oxford

    Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marsh DM, Page RB, Hanlon TJ et al (2008) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Genet 9:603–613

    Article  Google Scholar 

  • McFrederick QS, LeBuhn G (2006) Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Bio Conserv 129:372–382

    Article  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  • Noel S, Ouellet M, Galois P, Lapointe F (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606

    Article  CAS  Google Scholar 

  • Pilkey OH Sr, Pilkey OH Jr, Turner R (1975) How to live with an island: a handbook to Bogue Banks, North Carolina. North Carolina Department of Natural and Economic Resources, Raleigh

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Ricketts TH, Daily GC, Ehrlich PR, Fay JP (2001) Countryside biogeography of moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conserv Biol 15:378–388

    Article  Google Scholar 

  • Rickman JK, Connor EF (2003) The effect of urbanization on the quality of remnant habitats for leaf-mining Lepidoptera on Quercus agrifolia. Ecography 26:777–787

    Article  Google Scholar 

  • Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of central Iowa. J Anim Ecol 70:840–852

    Article  Google Scholar 

  • Riley SPD, Pollinger JP, Sauvajot RM et al (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation—a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  • Schtickzelle N, Joiris A, Van Dyck H, Baguette M (2007) Quantitative analysis of changes in movement behaviour within and outside habitat in a specialist butterfly. BMC Evol Biol 7:4

    Article  PubMed  Google Scholar 

  • Sheck AL, Groot AT, Ward CM et al (2006) Genetics of sex pheromone blend differences between Heliothis virescens and Heliothis subflexa: a chromosome mapping approach. J Evol Biol 19:600–617

    Article  CAS  PubMed  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple-regression and correlation extensions of the mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Takami Y, Koshio C, Ishii M, Fujii H, Hidaka T, Shimizu I (2004) Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Mol Ecol 13:245–258

    Article  PubMed  Google Scholar 

  • UNDP (2006) Demographic yearbook. United Nations, New York

    Google Scholar 

  • Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol Ecol 16:977–992

    Article  CAS  PubMed  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Wood BC, Pullin AS (2002) Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodiv Conserv 11:1451–1468

    Article  Google Scholar 

  • Zhang DX (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends Ecol Evol 19:507–509

    Article  PubMed  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  PubMed  Google Scholar 

  • Zollner PA, Lima SL (1999) Search strategies for landscape-level interpatch movements. Ecology 80:1019–1030

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the National Park Service, North Carolina Sea Grant, the U.S. Fish and Wildlife Service, and the Xerces Society for Invertebrate Conservation. Steve Hall’s initial research on the status of Atrytonopsis sp1 provided an important base for our research. Caitlin Gille and Carla Hales and helped enormously with field work and Fred Gould and Stephanie Lorick provided invaluable access to lab space and assistance with lab work. Randy Newman, Sam Bland, and David Rabon provided assistance with the coordination of logistics. Fred Gould, George Hess, and Rob Dunn provided valuable comments on earlier drafts of this manuscript. Special thanks to North Carolina State Parks and the local town governments and private landowners for access to many sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison K. Leidner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leidner, A.K., Haddad, N.M. Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Genet 11, 2311–2320 (2010). https://doi.org/10.1007/s10592-010-0117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0117-5

Keywords

Navigation