Skip to main content

Advertisement

Log in

Applications of landscape genetics in conservation biology: concepts and challenges

  • Review
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Landscape genetics plays an increasingly important role in the management and conservation of species. Here, we highlight some of the opportunities and challenges in using landscape genetic approaches in conservation biology. We first discuss challenges related to sampling design and introduce several recent methodological developments in landscape genetics (analyses based on pairwise relatedness, the application of Bayesian methods, inference from landscape resistance and a shift from population-based to individual-based analyses). We then show how simulations can foster the field of landscape genetics and, finally, elaborate on technical developments in sequencing techniques that will dramatically improve our ability to study genetic variation in wild species, opening up new and unprecedented avenues for genetic analysis in conservation biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelkrim J, Robersten BC, Stanton J-A, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genome sequencing. Biotechniques 46:185–191

    Article  CAS  PubMed  Google Scholar 

  • Anderson C, Epperson BK, Fortin MJ, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S (2010) The importance of spatial and temporal scale in landscape genetics. Mol Ecol (submitted)

  • Angelone S, Holderegger R (2009) Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. J Appl Ecol 46:879–887

    Article  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129

    Article  Google Scholar 

  • Barton NH, Wilson I (1995) Genealogies and geography. Philos Trans R Soc Lond B 349:49–59

    Article  CAS  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    PubMed  Google Scholar 

  • Blum MGB, Francois O (2010) Non linear regression models for approximate Bayesian computation. Stat Comput 20:63–73

    Article  Google Scholar 

  • Born C, Hardy OJ, Ossari S, Attéké C, Wickings EJ, Chevallier MH, Hossaert-McKey M (2008) Small-scale spatial genetic structure in the Central African rainforest tree species, Aucoumea klaineana: a hierarchical approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050

    Article  PubMed  Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Chen C, Durand E, Forbes F, Francois O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  • Cullingham CI, Kyle CJ, Pond BA, Rees EE, White BN (2009) Different permeability of rivers to raccoon gene flow corresponds to rabies incidence in Ontario, Canada. Mol Ecol 18:43–53

    PubMed  Google Scholar 

  • Currat M, Ray N, Excoffier L (2004) SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity. Mol Ecol Notes 4:139–142

    Article  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Landguth EL (in press a) Spurious correlations and inference in landscape genetics. Mol Ecol

  • Cushman SA, Landguth EL (in press b) Scale dependency in landscape genetic inference. Land Ecol

  • Cushman SA, McKelvey KS, Schwartz MK (2009a) Use of empirically derived source-destination models to map regional conservation corridors. Conserv Biol 23:368–376

    Article  PubMed  Google Scholar 

  • Cushman SA, Gutzwiller K, Evans J, McGarial K (2009b) The gradient paradigm: a conceptual and analytical framework for landscape ecology. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics and wildlife conservation. Springer, Tokyo, pp 83–110

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

  • Dungan JL, Perry JN, Dale MRT, Legendre P, Citron-Pousty S, Fortin MJ, Jakomulska A, Miriti M, Rosenberg MS (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640

    Article  Google Scholar 

  • Dunning JB, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson RH, Stevens EE (1995) Spatially explicit population models current forms and future uses. Ecol Appl 5:3–11

    Article  Google Scholar 

  • Durand E, Jay F, Gaggiotti OE, Francois O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong XX, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma CC, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Ellison AM (2004) Bayesian inference in ecology. Ecol Lett 7:509–520

    Article  Google Scholar 

  • Epperson BK (1995) Spatial distribution of genotypes under isolation by distance. Genetics 140:1431–1440

    CAS  PubMed  Google Scholar 

  • Epperson BK (2003) Geographical genetics. Princeton University Press, Princeton

    Google Scholar 

  • Epperson BK (2004) Multilocus estimation of genetic structure within populations. Theor Popul Biol 65:227–237

    Article  PubMed  Google Scholar 

  • Epperson BK (2007) Plant dispersal, neighbourhood size and isolation by distance. Mol Ecol 16:3854–3865

    Article  PubMed  Google Scholar 

  • Epperson BK, McRae B, Scribner KT, Cushman SA, Rosenberg MS, Fortin MJ, James PMA, Murphy M, Manel S, Legendre P, Dale MRT (2010) Utility of computer simulations in landscape genetics. Mol Ecol (submitted)

  • Epps CW, Palsboll PJ, Wehausen JD, Roderick GK, Ramey IR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Estoup A, Beaumont M, Sennedot F, Moritz C, Cornuet JM (2004) Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad, Bufo marinus. Evolution 58:2021–2036

    PubMed  Google Scholar 

  • Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landsc Ecol 24:673–683

    Article  Google Scholar 

  • Excoffier L, Estoup A, Cornuet JM (2005) Bayesian analysis of an admixture model with mutations and arbitrarily linked markers. Genetics 169:1727–1738

    Article  CAS  PubMed  Google Scholar 

  • Fahrig L, Merriam G (1985) Habitat patch connectivity and population survival. Ecology 66:1762–1768

    Article  Google Scholar 

  • Fall A, Fortin MJ, Manseau M, O’Brien D (2007) Spatial graphs: principles and applications for habitat connectivity. Ecosystems 10:448–461

    Article  Google Scholar 

  • Faubet P, Gaggiotti OE (2008) A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 178:1491–1504

    Article  PubMed  Google Scholar 

  • Fenster CB, Vekemans X, Hardy OJ (2003) Quantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae). Evolution 57:995–1007

    PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Foll M, Gaggiotti O (2006) Identifying the environmental factors that determine the genetic structure of Populations. Genetics 174:875–891

    Article  CAS  PubMed  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  Google Scholar 

  • Fortin MJ, Dale MRT (2005) Spatial analysis. A guide for ecologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Francois O, Blum MGB, Jakobsson M, Rosenberg NA (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genet 4:e1000075

    Google Scholar 

  • Guillaume F, Rougemont J (2006) Nemo: an evolutionary and population genetics programming framework. Bioinformatics 22:2556–2557

    Article  CAS  PubMed  Google Scholar 

  • Hamilton G, Currat M, Ray N, Heckel G, Beaumont M, Excoffier L (2005) Bayesian estimation of recent migration rates after a spatial expansion. Genetics 170:409–417

    Article  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D-persimilis. Genetics 167:747–760

    Article  CAS  PubMed  Google Scholar 

  • Hickerson MJ, Stahl EA, Lessios HA (2006) Test for simultaneous divergence using approximate Bayesian computation. Evolution 60:2435–2453

    CAS  PubMed  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338

    Article  CAS  PubMed  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Kuhner MK (2009) Coalescent genealogy samplers: windows into population history. Trends Ecol Evol 24:86–93

    Article  PubMed  Google Scholar 

  • Lande R (1987) Extinction thresholds in demographic models of territorial populations. Am Nat 130:624–635

    Article  Google Scholar 

  • Landguth EL, Cushman SA (2010) cdpop: a spatially explicit cost distance population genetics program. Mol Ecol Resour 10:156–161

    Article  CAS  Google Scholar 

  • Laval G, Excoffier L (2004) SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics 20:2485–2487

    Article  CAS  PubMed  Google Scholar 

  • Leblois R, Estoup A, Rousset F (2009) IBDSim: a computer program to simulate genotypic data under isolation by distance. Mol Ecol Resour 9:107–109

    Article  Google Scholar 

  • Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and autoregressive models in ecology. Ecol Monogr 72:445–463

    Article  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R, Alexandra J, Bennett A, Burgman M, Cale P, Calhoun A, Cramer V, Cullen P, Driscoll D, Fahrig L, Fischer J, Franklin J, Haila Y, Hunter M, Gibbons P, Lake S, Luck G, MacGregor C, McIntyre S, Mac Nally R, Manning A, Miller J, Mooney H, Noss R, Possingham H, Saunders D, Schmiegelow F, Scott M, Simberloff D, Sisk T, Tabor G, Walker B, Wiens J, Woinarski J, Zavaleta E (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11:78–91

    PubMed  Google Scholar 

  • Malecot G (1948) Les mathematiques de l’heredite. Masson et Cie, Paris, 63 pp

  • Manel S, Segelbacher G (2009) Perspectives and challenges in landscape genetics. Mol Ecol 18:1821–1822

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    Article  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  Google Scholar 

  • Marjoram P, Tavare S (2006) Modern computational approaches for analysing molecular genetic variation data. Nat Rev Genet 7:759–770

    Article  CAS  PubMed  Google Scholar 

  • Marsh DM, Page RB, Hanlon TJ, Corritone R, Little EC, Seifert DE, Cabe PR (2008) Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv Genet 9:603–613

    Article  Google Scholar 

  • McDevitt AD, Mariani S, Hebblewhite M, Decesare NJ, Morgantini L, Seip D, Weckworth BV, Musiani M (2009) Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol Ecol 18:665–679

    Article  CAS  PubMed  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    Article  CAS  PubMed  Google Scholar 

  • Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, Macisaac HJ (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035

    Article  CAS  PubMed  Google Scholar 

  • Neuenschwander S, Hospital F, Guillaume F, Goudet J (2008a) quantiNemo: an individual-based program to simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation. Bioinformatics 24:1552–1553

    Article  CAS  PubMed  Google Scholar 

  • Neuenschwander S, Largiader CR, Ray N, Currat M, Vonlanthen P, Excoffier L (2008b) Colonization history of the Swiss Rhine basin by the bullhead (Cottus gobio): inference under a Bayesian spatially explicit framework. Mol Ecol 17:757–772

    PubMed  Google Scholar 

  • O’Brien D, Manseau M, Fall A, Fortin MJ (2006) Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory. Biol Conserv 130:70–83

    Article  Google Scholar 

  • Oddou-Muratorio S, Demesure-Musch B, Pelissier R, Gouyon PH (2004) Impacts of gene flow and logging history on the local genetic structure of a scattered tree species, Sorbus torminalis L. Crantz. Mol Ecol 13:3689–3702

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Raufaste N, Rousset F (2001) Are partial mantel tests adequate? Evolution 55:1703–1705

    CAS  PubMed  Google Scholar 

  • Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Segelbacher G, Tomiuk J, Manel S (2008) Temporal and spatial Temporal and spatial analyses disclose consequences of habitat fragmentation on the genetic diversity in capercaillie (Tetrao urogallus). Mol Ecol 17:2356–2367

    Google Scholar 

  • Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Sokal RR, Wartenberg DE (1983) A test of spatial auto correlation analysis using an isolation by distance model. Genetics 105:219–237

    PubMed  CAS  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Holderegger R, Spear SF, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol (submitted)

  • Strand AE, Niehaus JM (2007) KERNELPOP, a spatially explicit population genetic simulation engine. Mol Ecol Notes 7:969–973

    Article  Google Scholar 

  • Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4:16

    Google Scholar 

  • Tallmon DA, Luikart G, Beaumont MA (2004) Comparative evaluation of a new effective population size estimator based on approximate Bayesian computation. Genetics 167:977–988

    Article  PubMed  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301

    Article  Google Scholar 

  • Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landsc Ecol 17:569–586

    Article  Google Scholar 

  • Thornton K, Andolfatto P (2006) Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster. Genetics 172:1607–1619

    Article  CAS  PubMed  Google Scholar 

  • Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl Ecol 6:535–545

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vignieri SN (2005) Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol Ecol 14:1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Wade MJ, McCauley DE (1988) Extinction and recolonization—their effects on the genetic differentiation of local populations. Evolution 42:995–1005

    Article  Google Scholar 

  • Wagner HH, Werth S, Kalwij JM, Bolli JC, Scheidegger C (2006) Modelling forest recolonization by an epiphytic lichen using a landscape genetic approach. Landsc Ecol 21:849–865

    Article  Google Scholar 

  • Watts PC, Saccheri IJ, Kemp SJ, Thompson DJ (2007) Effective population sizes and migration rates in fragmented populations of an endangered insect (Coenagrion mercuriale: Odonata). J Anim Ecol 76:790–800

    Article  PubMed  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  • With KA, King AW (1999) Extinction thresholds for species in fractal landscapes. Conserv Biol 13:314–326

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank the ESF programme ConGen for funding the workshop “Landscape Genetics” in Grenoble 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Segelbacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segelbacher, G., Cushman, S.A., Epperson, B.K. et al. Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11, 375–385 (2010). https://doi.org/10.1007/s10592-009-0044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0044-5

Keywords

Navigation